Estimating chromosomal copy numbers from Affymetrix SNP & CN chips

Henrik Bengtsson & Terry Speed Dept of Statistics, UC Berkeley

September 13, 2007

"Statistics and Genomics Seminar"

What are copy numbers and segmentation?

Size = 264 kb, Number of SNPs = 72 size

Objectives

- Total copy number estimation/segmentation
- Estimate single-locus CNs well (segmentation method takes it from there)
- All generations of Affymetrix SNP arrays:
 - SNP chips: 10K, 100K, 500K
 - SNP & CN chips: 5.0, 6.0
- Small and very large data sets

Available in aroma.affymetrix

"Infinite" number of arrays: 1-1,000s

Requirements: 1-2GB RAM

Arrays: SNP, exon, expression, (tiling).

Dynamic HTML reports

Import/export to existing methods

Open source: R

Cross platform: Windows, Linux, Mac

Acknowledgments

WEHI, Melbourne: Ken Simpson

UC Berkeley:
James Bullard
Kasper Hansen
Elizabeth Purdom

ISREC, Lausanne: "Asa" Wirapati

John Hopkins: Benilton Carvalho Rafael Irizarry Affymetrix, California:
Ben Bolstad
Simon Cawley
Luis Jevons
Chuck Sugnet

Affymetrix chips

Generic Affymetrix chip

Feature size: 100μm to 18μm to 11μm and now 5μm. Soon: 1μm, 0.8μm, with a huge increase in number of probes.

Abbreviated generic assay description

- 1. Start with target **gDNA** (genomic DNA) or **mRNA**.
- 2. Obtain *labeled single-stranded* target DNA fragments for hybridization to the probes on the chip.
- 3. After hybridization, washing, staining and scanning we get a **digital image**. This is summarized across pixels to **probe-level intensities** before we begin. They are our raw data.

Affymetrix probe terminology

Target DNA: ...CGTAGCCATCGGT.AACTACTCAATGATAG... Perfect match (PM): ATCGGTAGCCATTCATGAGTTACTA Mis-match (MM): ATCGGTAGCCATACATGAGTTACTA 25 nucleotides Target seq. Other seq. other PMs **PM**

Affymetrix SNP chips (Mapping 10K, 100K, 500K)

Single Nucleotide Polymorphism (SNP)

Definition:

A sequence variation such that two genomes may differ by a single nucleotide (A, T, C, or G).

```
Allele A:
...CGTAGCCATCGGTA/GTACTCAATGATAG...
Allele B:
```

A person is either AA, AB, or BB at this SNP.

Probes for SNPs

PM_A: ATCGGTAGCCA'TTCATGAGTTACTA

Allele A: ...CGTAGCCATCGGTAAGTACTCAATGATAG...

Allele B: ...CGTAGCCATCGGTAGCTACTCAATGATAG...

PM_B: ATCGGTAGCCA'CCCATGAGTTACTA

(Also MMs, but not in the newer chips, so we will not use these!)

Affymetrix SNP & CN chips

(Genome-Wide Human SNP Array 5.0 & 6.0)

Copy-number/non-polymorphic probes (CNPs)

CN locus: ...CGTAGCCATCGGTAAGTACTCAATGATAG...

PM: ATCGGTAGCCATTCATGAGTTACTA

Genome-Wide Human SNP Array 6.0 includes frequently requested properties

• > 906,600 SNPs:

- Unbiased selection of 482,000 SNPs:
 historical SNPs from the SNP Array 5.0 (== 500K)
- Selection of additional 424,000 SNPs:
 - Tag SNPs
 - SNPs from chromosomes X and Y
 - Mitochondrial SNPs
 - Recent SNPs added to the dbSNP database
 - SNPs in recombination hotspots

> 946,000 copy number probes (CNPs):

- 202,000 probes targeting 5,677 CNV regions from the Toronto Database of Genomic Variants. Regions resolve into 3,182 distinct, non-overlapping segments; on average 61 probe sets per region
- 744,000 probes, evenly spaced along the genome

Large increase in density

History of SNP & CNP chips Affymetrix & Illumina are competing

	10K	100K	500K	5.0	6.0
Released	July 2003	April 2004	Sept 2005	Feb 2007	May 2007
# SNPs	10,204	116,204	500,568	500,568	934,946
# CNPs	-	-	1	340,742	946,371
# loci	10,204	116,204	500,568	841,310	1,878,317
Distance	294kb	25.8kb	6.0kb	3.6kb	1.6kb
Price / chip set	65 USD	400 USD	260 USD	175 USD	300 USD
# loci / cup of espresso (\$1.35)	116 loci	216 loci	1426 loci	3561 loci	4638 loci

Price source: Affymetrix Pricing Information, http://www.affymetrix.com/, September 2007.

Copy-number analysis with SNP arrays (10K, 100K, 500K)

SNP chips can be used to determine copy number

Some sample figures based on a 250K SNP chip showing deletions and amplifications

Size = 424 kb, Number of SNPs = 118 Results using of dChip and GLAD.

Size = 168 kb, Number of SNPs = 55

Our method:
CRMA
(10K, 100K, 500K)

	CRMA
Preprocessing (probe signals)	allelic crosstalk (or quantile)
Total CN	$PM = PM_A + PM_B$
Summarization (SNP signals θ)	log-additive PM only
Post-processing	fragment-length (GC-content)
Raw total CNs R = Reference	$M_{ij} = \log_2(\theta_{ij}/\theta_{Rj})$ chip <i>i</i> , probe <i>j</i>

	CRMA	Cross-hybridization:
Preprocessing (probe signals)	allelic crosstalk (quantile)	Allele A: TCGGTAACTC
Total CNs	PM=PM _A +PM _B	Allele B: TCGGTATCTACTC
Summarization (SNP signals θ)	log (PN	AA S S S S
Post-processing	fra((G(AB	
Raw total CNs	M _{ij}	PM _A >> PM _B
		PM _A ≈ PM _B BB
		$PM_A \ll PM_B$

	CRMA
Preprocessing (probe signals)	allelic crosstalk (quantile)
Total CNs	PM=PM _A +PM _B
Summarization (SNP signals θ)	log-additive (PM-only)
Post-processing	fragment-length (GC-content)
Raw total CNs	$M_{ij} = \log_2(\theta_{ij}/\theta_{Rj})$

	CRMA
Preprocessing (probe signals)	allelic crosstalk (quantile)
Total CNs	PM=PM _A +PM _B
Summarization (SNP signals θ)	log-additive (PM-only)
Post-processing	fragment-length (GC-content)
Raw total CNs	$M_{ij} = \log_2(\theta_{ij}/\theta_{Rj})$

	CRMA
Preprocessing (probe signals)	allelic crosstalk (quantile)
Total CNs	PM=PM _A +PM _B
Summarization (SNP signals θ)	log-additive (PM-only)
Post-processing	fragment-length (GC-content)
Raw total CNs	$M_{ij} = log_2(\theta_{ij}/\theta_{Rj})$

Crosstalk calibration corrects for differences in distributions too

	CRMA
Preprocessing (probe signals)	allelic crosstalk (quantile)
Total CNs	PM=PM _A +PM _B
Summarization (SNP signals θ)	log-additive (PM-only)
Post-processing	fragment-length (GC-content)
Raw total CNs	$M_{ij} = \log_2(\theta_{ij}/\theta_{Rj})$

Crosstalk calibration corrects for differences in distributions too

	CRMA
Preprocessing (probe signals)	allelic crosstalk (quantile)
Total CNs	PM=PM _A +PM _B
Summarization (SNP signals θ)	log-additive (PM-only)
Post-processing	fragment-length (GC-content)
Raw total CNs	$M_{ij} = log_2(\theta_{ij}/\theta_{Rj})$

	CRMA
Preprocessing (probe signals)	allelic crosstalk (quantile)
Total CNs	PM=PM _A +PM _B
Summarization (SNP signals θ)	log-additive (PM-only)
Post-processing	fragment-length (GC-content)
Raw total CNs	$M_{ij} = log_2(\theta_{ij}/\theta_{Rj})$

The log-additive model:

$$\log_2(PM_{ijk}) = \log_2 \theta_{ij} + \log_2 \phi_{jk} + \varepsilon_{ijk}$$

sample i, SNP j, probe k.

Fit using robust linear models (rlm)

	CRMA
Preprocessing (probe signals)	allelic crosstalk (quantile)
Total CNs	PM=PM _A +PM _B
Summarization (SNP signals θ)	log-additive (PM-only)
Post-processing	fragment-length (GC-content)
Raw total CNs	$M_{ij} = log_2(\theta_{ij}/\theta_{Rj})$

Longer fragments \Rightarrow less amplified by PCR \Rightarrow weaker SNP signals θ

100K

	CRMA
Preprocessing (probe signals)	allelic crosstalk (quantile)
Total CNs	PM=PM _A +PM _B
Summarization (SNP signals θ)	log-additive (PM-only)
Post-processing	fragment-length (GC-content)
Raw total CNs	$M_{ij} = log_2(\theta_{ij}/\theta_{Rj})$

Longer fragments \Rightarrow less amplified by PCR \Rightarrow weaker SNP signals θ

500K

	CRMA
Preprocessing (probe signals)	allelic crosstalk (quantile)
Total CNs	PM=PM _A +PM _B
Summarization (SNP signals θ)	log-additive (PM-only)
Post-processing	fragment-length (GC-content)
Raw total CNs	$M_{ij} = log_2(\theta_{ij}/\theta_{Rj})$

Normalize to get same fragment-length effect for all hybridizations

	CRMA
Preprocessing (probe signals)	allelic crosstalk (quantile)
Total CNs	PM=PM _A +PM _B
Summarization (SNP signals θ)	log-additive (PM-only)
Post-processing	fragment-length (GC-content)
Raw total CNs	$M_{ij} = log_2(\theta_{ij}/\theta_{Rj})$

Normalize to get same fragment-length effect for all hybridizations

	CRMA
Preprocessing (probe signals)	allelic crosstalk (quantile)
Total CNs	PM=PM _A +PM _B
Summarization (SNP signals θ)	log-additive (PM-only)
Post-processing	fragment-length (GC-content)
Raw total CNs	$M_{ij} = \log_2(\theta_{ij}/\theta_{Rj})$

Comparison

(other methods)

Other methods

	CRMA	dChip (Li & Wong 2001)	CNAG (Nannya et al 2005)	CNAT v4 (Affymetrix 2006)
Preprocessing (probe signals)	allelic crosstalk (quantile)	invariant-set	scale	quantile
Total CNs	PM=PM _A +PM _B	PM=PM _A +PM _B MM=MM _A +MM _B	PM=PM _A +PM _B	$\theta = \theta_A + \theta_B$
Summarization (SNP signals θ)	log-additive (PM-only)	multiplicative (PM-MM)	sum (PM-only)	log-additive (PM-only)
Post-processing	fragment-length (GC-content)	-	fragment-length GC-content	fragment-length GC-content
Raw total CNs	$M_{ij} = log_2(\theta_{ij}/\theta_{Rj})$	$M_{ij} = log_2(\theta_{ij}/\theta_{Rj})$	$M_{ij} = log_2(\theta_{ij}/\theta_{Rj})$	$M_{ij} = log_2(\theta_{ij}/\theta_{Rj})$

How well can be differentiate between one and two copies?

HapMap (CEU):

Mapping250K Nsp data

30 males and 29 females (no children; one excl. female)

Chromosome X is known:

Males (CN=1) & females (CN=2) 5,608 SNPs

Classification rule:

 M_{ij} < threshold \Rightarrow CN_{ij} =1, otherwise CN_{ij} =2.

Number of calls: $59 \times 5,608 = 330,872$

Calling samples for SNP_A-1920774

Receiver Operator Characteristic (ROC)

Single-SNP comparison A random SNP

Single-SNP comparison A non-differentiating SNP

Performance of an average SNP with a common threshold

CRMA & dChip perform better for an average SNP (common threshold)

Number of calls: $59 \times 5,608 = 330,872$

(incorrectly calling females male)

"Smoothing"

Average across SNPs non-overlapping windows

Averaging three and three (R=3)

Better detection rate when averaging (with risk of missing short regions)

CRMA does better than dChip

CRMA does better than dChip

Comparing methods by "resolution" controlling for FP rate

Early work:

CRMA 6 (SNP 5.0 & 6.0 chips)

CRMA with CN probes

	CRMA
Preprocessing	allelic crosstalk
(probe signals)	(or quantile)
Total CN	$SNPs: PM = PM_A + PM_B$
	CNs: PM
Summarization	single-array
(SNP signals θ)	averaging
Post-processing	fragment-length
	(GC-content)
Raw total CNs	$M_{ij} = \log_2(\theta_{ij}/\theta_{Ri})$
R = Reference	chip <i>i,</i> probe <i>j</i>

Allelic crosstalk calibration -incorporating CN probes

SNPs:

For each allele pair in {AC, AG, AT, CG, CT, GT}:

1) Estimate crosstalk model:

offset:
$$\mathbf{a}_{SNP} = (\mathbf{a}_{A}, \, \mathbf{a}_{B})$$

crosstalk matrix: $\mathbf{S} = [S_{AA}, \, S_{AB}; \, S_{BA}, \, S_{BB}]$

2) Calibrate probe pairs $\{PM\} = \{(PM_A, PM_B)\}$:

 $\textbf{PM'} \leftarrow \textbf{S}^{\text{-1}} \left(\textbf{PM - a}_{\text{SNP}} \right)$

- 1) Calculate the average offset across all alleles: offset: $a_{CN} = 1/6 * \sum_{k} \{w_k*(a_A + a_B)/2\}$, with weights w_k corresponding to n:s (above).
- 2) Calibrate CN probes {y}:

 $PM' \leftarrow PM - a_{CN}$

3) Rescale (PM') to have average 2200.

Probe-level modelling (PLM)

SNPs:

* Technical replicates:

$$PM_A = (PM_{A1}, PM_{A2}, PM_{A3})$$
 and $PM_B = (PM_{B1}, PM_{B2}, PM_{B3})$

All should have the same probe affinities => No probe-affinity model(!)

* Suggestion:

```
PM_A = median \{PM_{Ak}\}

PM_B = median \{PM_{Bk}\}

PM = PM_A + PM_B (compare to CN probes!)

\theta = PM
```

CN probes:

* (Mostly) single probe units, i.e. nothing much to do; $\theta = PM$

CRMA with and without CN probes

	CRMA (SNP)	CRMA6 (SNP & CN)
Preprocessing (probe signals)	allelic crosstalk (quantile)	allelic crosstalk (quantile)
Summarization (locus signals θ)	Total CN: $PM=PM_A+PM_B$ $log-additive$ (PM-only) $\theta = "chip effects"$	Averaging SNPs: $PM_A = median\{PM_A\}$ $PM_B = median\{PM_B\}$ Total CN: $PM = PM_A + PM_B$ $\theta = PM$
Post-processing	fragment-length (GC-content)	fragment-length (GC-content)
Raw total CNs	$M_{ij} = log_2(\theta_{ij}/\theta_{Rj})$	$M_{ij} = log_2(\theta_{ij}/\theta_{Rj})$

Comparison across generations (100K - 500K - 6.0)

Average-locus ROC $100K \rightarrow 500K \rightarrow 6.0$

100K: Hind240, Xba240 & both

500K: Nsp, Sty & both

6.0: SNP, CN probes & all

Resolution comparison - at 1.0% FP

Resolution comparison - at 1.0% FP

At any given resolution (kb), we have:

$$TP_{6.0,SNP} > TP_{500K} > TP_{100K}$$

Note, the differences may be due to lab effects (the HapMap 100K, 500K & 6.0 hybridization were done in different years/labs).

In either case, the trend is in the right direction.

Summary

Conclusions

- It helps to:
 - Control for allelic crosstalk.
 - Sum alleles at PM level: $PM = PM_A + PM_B$.
 - Control for fragment-length effects.
- Resolution: 6.0 (SNPs) > 500K > 100K (or lab effects).
- Currently estimates from CN probes are poor.
 Not unexpected. Better preprocessing might help.

Appendix

Density of TP rates when controlling for FP rate (5,608 SNPs)

FP rate: 1.0% (incorrectly calling females male)

Effect of different normalization steps

