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Detect more and smaller aberrations with less errors
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Copy number analysis is about finding
"aberrations" in one or several individuals
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The HapMap project
- Large project to identify SNPs in Humans (2003-)

feature

The Intemational HapMap Consortium*

*Lists of participants and affiiations appear at the end of the paper

The goal of the International HapMap Project is to determine the common patterns of DNA sequence variation in the human genome
and to make this information freely available in the public domain. An international consortium is developing a map of these
patterns across the genome by determining the genotypes of one million or more sequence variants, their frequencies and the
degree of association between them, in DNA samples from populations with ancestry from parts of Africa, Asia and Europe. The
HapMap will allow the discovery of sequence variants that affect common disease, will facilitate development of diagnostic tools,
and will enhance our ability to choose targets for therapeutic intervention.

The HapMap is a catalog of common genetic variants (SNPs)
that occur in human beings. It describes what These variants
are, where they occur in our DNA, and How they are

distributed among people within populations and amo ng
populations in different parts of the world.

URL: http://www.hapmap.org/




The HapMap project

- 270 normal individuals genotyped by different labs
using various technologies

90 CEU individuals (Utah/Europe, 30 trio families)
90 YRI individuals (Nigeria; 30 trio families)

45 CHB (China; unrelated)

45 JPT (Japan; unrelated)

Publicly available:

« High quality data.

 Raw data, e.g. Affymetrix CEL files.
« (Genotypes.

e Studied by many groups.




Copy number polymorphism
- People share common CN aberrations (2005-)
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The extent to which large duplications and deletions contribute to huy
variation and diversity is unknown. Here, we show that large-scale ¢
polyrmarphisms (CNPs) (about 100 kilobases and greater) contribute
to genomic variation between normal humans. Representational olif
microarray analysis of 20 individuals revealed a total of 221 copy ny
ences representing 76 unique CNPs. On average, individuals differed
and the average length of a CNP interval was 465 kilobases. We ol
number variation of 70 different genes within CMNP intervals, incl
involved in neurological function, regulation of cell growth, regulatid
olism, and several genes known to be associated with disease.

[n our previous studie
with the use of representa
fide microarray analysis
detected manv genomic
deletions in tumor genoms
comparison to an unrelat

Many of the genetic differences between humans
and other primates are a result of large duplica-
tions and deletions (/-3). From these observa-
tions, if is reasonable to expect that differences in
gene copv number could be a significant source of
oenefic variation between humans. A few exam-

nare
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ples of large duplication pobymorphisms have  (5), but some of these

Global variation in copy number in the

human genome

Richard Redon', Shumpei Ishikawa™, Karen R. Fitch®, Lars Feuk™, George H. Perry’, T. Daniel Andrews’,

Heike Fiegler', Michael H. Shapero®, Andrew R. Carson™, Wenwei Chen®, Eun Kyung Cho’, Stephanie Dallaire’,
Jennifer L. Freeman’, Juan R. Gonzalez®, Manica Gratacos”, Jing Huang®, Dimitrios Kalaitzopoulos®,

Daisuke Komura®, Jeffrey . MacDonald®, Christian R. Marshall™®, Rui Mei®, Lyndal Montgomery!,

Kunihiro Mishimura®, Kohji Okamura™®, Fan Shen®, Martin 1. Somerville”, Joelle Tchinda®, Armand Valsesia',
Cara Woodwark', Fengtang Yang', Junjun Zhang”, Tatiana Zerjal’, Jane Zhang®, Uuis Armengol®,

Donald F. Conrad™, Xavier Estivill*"', Chris Tyler-Smith’, Nigel P. Carter', Hiroyuki Aburatani®™", Charles Lee™",
Keith W. Jones®, Stephen W. Scherer™® & Matthew E. Hurles'

Copy number variation (CNV) of DNA sequences is functionally significant but has yet to be fully ascertained. We have
constructed a first-generation CNV map of the human genome through the study of 270 individuals from four populations
with ancestry in Europe, Africaor Asia (the HapMap collection). DNA from theseindividuals was screened for CHV using two
complementary technologies: single-nucleotide polymorphism (SNP) genotyping arrays, and clone-based comparative
genomic hybridization. A total of 1,447 copy number variable regions (CNVRs), which can encompass overlapping or
adjacent gains or losses, covering 360 megabases (12% of the genome) were identified inthese populations. These CNVRs
contained hundreds of genes, disease lod, functional elements and segmental duplications. Notably, the CNVRs
encompassed more nucleotide content per genome than SNPs, underscoring the importance of CNV in genetic diversity and
evolution. The data obtained delineate linkage disequilibrium patterns for many CNV's, and reveal marked variation in copy
number among populations. We also demonstrate the utility of this resource for genetic disease studies.

Genetic variation in the human genome takes many forms, ranging
trom large, microscopically visible chromosome anomalies tosingle-
nuclectide changss. Recently, multiple studies have discovered an
abundance of submicroscopic copy number variation of DA seg-
ments ranging from kilobases (kb) to megabases (Mb) in size™
Deletions, insertions, duplications and complex multi-site variants®,

at genes at which other types of mutation are strongly associated
with specific diseases: CHARGE syndrome™ and Parkinson's and
Alzheimer's disease™ ™. Furthermore, CNV: can influence gene
expressionindirectly through position etfects, predispose to deleteri-
ous genetic changes, or provide substrates tor chromosomal change
in evolution'™17,




The Cancer Genome Atlas (TCGA) project
- Large project for genetic mapping of tumors (2007-)

SCIENTIFIC

AMERICAN

Scientific American Magazine - February 18, 2007

Mapping the Cancer Genome
Pinpointing the genes involved in cancer will help chart a new cour
human malignancies

By Francis 5. Colling and &nna D. Barker

"If we wish to learn more about cancer, we must now concentrate on the celiy
Dulbscco penned those words more than 20 years ago in one of the earlisst ¢
Human Genome Project. "We are at a turning point,” Dulbecco, a pionserng ¢
jounal Science. Discoveries in preceding years had made clear that much of 1
stermnmed from damage to their genes and alterations in their functioning. "We

discover the genss important in malignancy by a piecemeal approach, or & =&

Dulbececo and others in the scientific community grasped that sequencing the |
achievement itself, would mark just the first step of the guest to fully understal
sequence of nuclectide bazes in normal human DA in hand, scientists would
hurnan genes according to their function--which in turn could reveal their roles
Dulbeceo’s vizion has moved from pipe dream to realty. Less than three vear
completion, the Mational Institutes of Health has officially launched the pilot sty
catalogus of the genomic changes invalved in cancer: The Cancer Genome At

The main reason 1o pursue this next ambitious venture in large-zcale biology w
humankind. Every day more than 1,500 Americans die from cancer--about ong
population ages, this rate is expected to rige significantly in the years ahead w
the identification of new vulnerabilities within cancerous cells and develop nove

Still, however noble the intent, it takes more than a desire to ease human suff
magnitude. YWhen applied to the 50 most common types of cancer, this effort
of more than 10,000 Human Gencme Projects in terms of the sheer volume of]
therefore be matched with an ambitious but realistic assesament of the emerg
smarter war against cancer.

daiz10.1038 / nature 07385
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Comprehensive genomic characterization
defines human glioblastoma genes and

core pathways

The Cancer Genome Atlas Research Metwork®

Human cancer cells typically harbour multiple chromosomal aberrations, nucleotide substitutions and epigenetic

modifications that drive malignant transformation. The Cancer Genome Atlas (TCGA) pilot project aims to assess the value
of large-scale multi-dimensional analysis of these molecular characteristics in human cancer and to provide the d ata rapidby
to the research community. Here we report the interim integrative an alysis of DN A copy number, gene expression and DNA
methylation aberrations in 206 glioblastomas —the most common type of primary adult brain cancer—and nucleotide

sequence aberrations in 91 of the 206 glioblastomas. This analysis provides new insights into the roles of ERBE2, NF1 and
TP53, uncovers frequent mutations of the phosphatidylinositol-3-0H kinase regulatory subunit gene PIK3R1, and provides a
network view of the pathways altered in the development of glioblastoma. Furthermore, integration of mutation, DNA

methylation and clinical treatment data reveals a link between MGMT promoter methylation and a hypermutator phenot ype
consequent to mismatch repair deficiency in treated glioblastomas, an cbservation with potential clinical implications.

Together, these findings establish the feasibility and power of TCGA, demonstrating that it can rapidly expand knowled ge of

the molecular basis of cancer,

Cancer is a disease of genome alterations: DNA sequence changes,
copy number abemrations, chromaosomal rearrangements and modi-
fication in DNA methylation together drive the development and
progression of human malignancies. With the complete sequencing
af the human genome and continuing improvement of high-
throughput genomic technologies it is now feasible to conternplate
comprehensive surveys of human cancer genomes. The Cancer
Genorme Atlas aims to catalogue and discover major cancer-causing
genomealterations in large cohorts of human tumours through inte-
grated multi-dimensional analyses.

The first cancer studied by TCGA is glioblastoma (World Health
(hganization grade IV), the most common primary brain tumour in
adults'. Primary giohlastoma, which comprises more than 909 of
biopsied or resected cases, arises de nowe without antecedent history
af low-grade ease, whereas s linhlasto .

- I'E N

Results

Data release. As a public resource, all TOGA data are deposited at
the Diata Coordinating Center (DOC) for public access (http/
cancergenome.nih.gov/ ), TOGA data are classified by data type (for
example, clinical, mutations, gene expression ) and data level to allow
structured access to this resource with apprapriate patient privacy
protection. An overview of the data organization is provided in the
Supplementary Methods, and a detailed descriptionis available in the
TOGA Drata Primer (httpe/ftega-datancinibugov/docy TOGA_Data_Primer.
pdfl.

Biospecimen collection

Retrospective hiospecimen repositories were screened for newly
diagnosed gliohlastoma based on surgical pat hology reports and cin-
ical records ( Supplementary Fig. 1 1. Sampleswere turther selected for

" P B T




The TCGA project

- A large number of tissues are studies with many DNA & RNA technologies

e Tumor types:
— brain cancer (glioblastoma multiforme, or GBM),
— lung cancer (squamous cell carcinoma of the lung), and
— ovarian cancer (serous cystadenocarcinoma of the ovary).

o 234 tumors (of 500) characterized.

e Multiple labs in the US
— Broad, Harvard, Stanford, LBNL, ...

« High quality data.
o Platforms: Affymetrix, lllumina, Agilent, ...

 Gene-, exon-, microRNA- expression, methylation, SNP &
CN, sequencing...

« Raw and summarized data immediately available (publicly),
e.g. Affymetrix CEL files.



Combining copy numbers across platforms & labs

Henrik Bengtsson (UC Berkeley), Amrita Ray (LBNL), Paul Spellman (LBNL), Terry Speed (UC Berkeley)

BACKGROUND:

Whole-genome copy-number (CN) studies are rapidly
expanding, and with this expansion comes a demand for
increased precision and resolution  of CN estimates. Several
recent studies have obtained CN estimates from more than

one platform on the same samples, and it is natural to want to
combine the different estimates in order to meet this demand.

PROBLEM:

CN estimates from different platforms show different

degrees of attenuation of the true CN changes. Differences
can also be observed in CN estimates from the same platform
run in different labs, or in the same lab, with different analytical
methods. This is the reason why it is not straightforward
matter to combine CN estimates from different sourc es
(platforms, labs, analysis methods, etc).
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The smoothed raw CNs from the four sources have similar
CN profiles but different mean levels.

(A) Broad, Affymetrix GWS6, n=1800K, 1.59kb/locus, 25-mers
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(B) Stanford, lllumina 550K, n=550K, 5.53kb/locus, 50-mers
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(C) MSKCC, Agilent 244K, n=236K, 12.7kb/locus, 60-mers
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(D) Harvard, Agilent 244K, n=236K, 12.7kb/locus, 60-mers
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Tumor/normal CNs by four TCGA centers (“sources”)

in a 60Mb region on Chr3 in sample TCGA-02-104.
(The combined set would consist of 2,822K loci with
0.95kb/locus.)



METHOD:

We have developed a single-sample multi-source

normalization that brings full-resolution CN
estimates to the same scale across sources.

Kernel estimators and principal component
curves are used to estimate the non-linear

relationships between the sources. Full-resolution

data is then normalized such that these
relationships become linear

The normalized estimates are such that for any
underlying CN level, the mean level of the CN
estimates is the same regardless of source
with consistent mean levels are better suited for
being combined across sources |, e.g. existing
segmentation methods may be used to identify
aberrant regions.

. CNs
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The smoothed normalized CNs from the four sources have

similar CN profiles and same mean levels.
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RESULTS: 2A
We use microarray-based CN estimates from The Cancer <o
Genome Atlas (TCGA) project to illustrate the method. We ‘Tof’ 1 Pasi

show that after normalization the mean levels  of randomly

M

selected CN aberrations are the same across platforms 332 35.3 354 355 35.6
and that the normalized and combined data better separate

two CN states at a given resolution. 2] B
We conclude that it is possible to combine CNs from g

M

multiple sources such that the resolution becomes

effectively larger , and when multiple platforms are 35.2 35.3 35.4 35.5 35.6

combined, they also enhance the genome coverage by ~JIC
complementing each other in different regions. <
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(B) fi ittt e A 400kb region in TCGA-02-104 on Chr 3:
e A ' sl CNs from different sources give different
©) - ’ e I T segmenting results at different precisions.
- ED W g W de i. g B I,
(D) & e e e =N |
’ e W 62 e £ 8 7!
(comb+raw ) ”‘5‘"%%"!** ° : EN-A,B,C,D
- . . & : é -
(comb+norm ) ;f’ﬂmmﬂth S000 005 010 015 020 025 g o:
b ) ’ False—positive rate o
= 1

35.2 35.3 35.4 355 35.6
At any given resolution (amount of smoothing), with combined
normalized CNs (solid red) one can separate two CN states better
than with combined raw CNs (dot-dashed red), and with each of
the individuals sources (gray dotted).

With combined normalized CNs, there is more
power to detect change points (CPs) and their
locations are more precise.



Examples of genomic profiles

50034

o

o
5 20 R R RSOSSN 1= S (U SRR - W) NURES TN W R - W )TN [ WO - SR COUN I | I 'qhﬁ!
E ....... m ...................................................... Flitaranis L B R S g A A R L AR A B -+
gﬁ‘“”‘*“ -------- e ﬂ-HWWW-WWﬁ*M’ -----

10 L AN el O 5t AU s s D £ oo ol ootk oot oo Ot ERRCLIR A IS B . it e e ) e EEN

I_ ...........................................................................................................................................

q_

ey 3 5 7 g i 13 Y W 8B

o

(4]

o |
a - ;
g
Nm*w
E‘d

I—

o

=7

| poop

o
o
=

= -

5

o

o o

E“:::

i
o
il

{.

=



The Affymetrix
platform




The Affymetrix GeneChip
IS a synthesized high-density (single-array) microarray

1 million identical
25-mer sequences

6.5 million probes/chip



Copy-number probes are used to quantify
the amount of DNA at known loci

CN locus: ... CGTAGCCATCGGTAAGTACTCAATGATAG. . .
PM: ATCGGTAGCCATATGAGTTACTA
CN=1;— CN=2 g  CN=3 =y




Single Nucleotide Polymorphism (SNP)

Definition:
A seguence variation such that two chromosomes may
differ by a single nucleotide (A, T, C, or G).

Allele A :

Allele B :

A person is either AA, AB, or BB at this SNP.



Probes for SNPs

PM,: ATCGGTAGC ATGAGTTACTA
Allele A: ... CGTAGCCATCGGT ACTCAATGATAG . .
Allele B: ... CGTAGCCATCGGT ACTCAATGATAG . .
PMg: ATCGGTAGC ATGAGTTACTA

(Also MMs, but not in the newer chips, so we will not use these!)

---------------------------------------------

PM, >> PM, PM, ¥ PM, PM, << PM,



SNP probes can also be used to
estimate total copy numbers

PM = PM, + PM, = 2c PM = PM, + PM = 3c



The Affymetrix assay
- takes 4-5 working days to complete

1. Start with target gDNA (genomic DNA) or mRNA.

2. Obtain labeled single-stranded target DNA fragments
for hybridization to the probes on the chip.

3. After hybridization, washing, and scanning we get a
digital image .

4. Image summarized across pixels to probe-level
Intensities before we begin. This is our "raw data ".



Restriction enzymes digest the DNA, which is then

amplified and hybridized

Figure 1: GeneChip® Mapping Assay Overview.

Genomic DNA (250 ng)
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Target DNA find their way to complementary
probes by massive parallel hybridization

EF Freprranis =th oeascar egm bors 889 w0 B st

Actual size of GeneChip™

500,000 colts on each GensChip™ array



Scanning

Example array: 1600x1600 cells; 65536 intensity levels (16 bits).




Image Analysis

Example array:

Dimensions: 1600x1600 cells

Each cell: 3x3 pixels

Dynamic range: 65536 (16-bits) intensity levels
Cell summaries: (mean pixel, stddev pixel, #pixels)

Lhenel




Preparation . - DAT File(s)
+ Hybridization [Image, pixel intensities]

+ Scanning

Image analysis ﬂ

CDF
workable raw data - + [Chip Description File]

MappingZ50K_hep + Sty




A brief history
of Affymetrix SNP & CN arrays




How did we get here?

Data from 2003 on Chr22 (on of the smaller chromosomes)
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2003: 10,000 loci X1

17
186p=
19p=
20f=
21f=
22|
23f=

Physical position



2004: 100,000 locl x10

I 1 L
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Physical position



2005: 500,000 locl x50
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2006: 900,000 locl Xx90

17
186p=
19p=
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22|
23f=

Physical position



2007: 1,800,000 loci x180

_______________________________________________________




Genome-Wide Human SNP Array 6.0
- state-of-the-art array

e > 006,600 SNPs:
— Unbiased selection of 482,000 SNPs:
historical SNPs from the SNP Array 5.0 (== 500K)
— Selection of additional 424,000 SNPs:
e Tag SNPs
« SNPs from chromosomes X and Y
* Mitochondrial SNPs
» Recent SNPs added to the dbSNP database
 SNPs in recombination hotspots

e > 946,000 copy-number probes:

— 202,000 probes targeting 5,677 CNV regions from the Toronto
Database of Genomic Variants. Regions resolve into 3,182
distinct, non-overlapping segments; on average 61 probe sets
per region

— 744,000 probes, evenly spaced along the genome



Rapid increase In density

Distance between loci:
4x further out...

ne 2 ee————
100K EEE— 26Kb 294Kkb
500K HEEE 6.0kb next?
5.0 WM 3.6kb .o

6.0 B 1.6kb

1,000,000

500,000 -

100,000 - year

2003 2004 2005 2006 2007




Affymetrix & lllumina are competing
- we get more bang for the buck (cup)

10K 100K 500K 5.0 6.0

Released July 2003 April 2004 Sept 2005 Feb 2007 May 2007

# SNPs 10,204 116,204 500,568 500,568 934,946
# CNPs - - - 340,742 946,371
# loci 10,204 116,204 500,568 841,310 1,878,317
Distance 294kb 25.8kb 6.0kb 3.6kb 1.6kb
Price / chip set 65 USD 400 USD 300 USD 175 USD 300 USD
# loci / cup of 116 loci 215 loci 1236 loci 3561 loci 4638 loci
espresso ($1.35)

Price source: Affymetrix Pricing Information [http://store.affymetrix.com/] and Berkeley Coffee Shops, Dec 2008.



Affymetrix are moving away from MM probes
- therefore we don’t utilize them

Target DNA: .. . CGTAGCCATCGGT CTCAATGATAG
HTHTHTTHTHTTHT

Perfect match (PM): ATCGGTAGCCAINTCATGAGTTACTA
Mis-match (MM): ATCGGTAGCCACATGAGTTACTA

N— ——

—~
EEEEEEEEEEEEEEEEEEEEEEEEEEEE 2 5 n u C I e Oti d e S . :.:::::::::::::::::::::::: :
Target seq. .'.._..T.._.._--'-'--_--—--T--—--_-f-,-— sttt .:\:\: S — :_: - _ Other seq.
\_\\ \_/
PM other PMs



Low-Level
Copy Number Analysis

Part 2 — Simple preprocessing
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Recap: Copy-number probes

CN locus: ... CGTAGCCATCGGTAAGTACTCAATGATAG. . .
PM: ATCGGTAGCCATATGAGTTACTA
CN=1;— CN=2 g  CN=3 =y




Recap: Adding SNP probes gives total CN signal

PM = PM, + PM_ = 2¢ PM = PM, + PM, = 3¢



Notation
- here and in our papers

Indices:

Arrays/samples:1=1, 2, ..., |
Loci/SNPs/CN units: =1, 2, ..., J
Replicated probes for SNP: k=1, 2, ..., K

Probe signals:
CN locus: y; = PMj (single-probe units)
SNP allele pair k: (yijkA1yijkB) = (PMijkA’PMijkB)

Summarized signals (“chip effects”):
CN locus: 6;
SNP: (0;,0z)



A simple way to obtain CN estimates

e Calculate non-polymorphic SNP summaries:

— For each array I=1,..., and SNP j=1,...,J:
* Probe allele pairs: (PM;,PM;y5); k=1,...,K
« For both alleles, average across probes:

GijA = mediank{PI\/IijkA}, eUB = mediank{PI\/IijkB}
« Sum both alleles: 6, = 6, + 6,5
« Calculate reference 6 across all arrays:
— For each SNP j=1,...,J:
* Og = median; {0}
e Calculate CN log-ratios:

— For each array i=1,...,l and SNP |=1,...,J:
* M; =log, (5;/ 6g)



The software tools make this easy for you
- using aroma.affymetrix package

cs <- AffymetrixCelSet$byName(“GSE8605”,
chipType="Mappingl0K_Xbal42");

plm <- AvgCnPIm(cs, combineAlleles=TRUE);
fit(plm);
ces <- getChipEffectSet(plm);

theta <- extractTheta(ces);
thetaR <- rowMedians(theta);
M <- log2(theta / thetaR);



Copy number regions are found by
lining up estimates along the chromosome

Example: Log-ratios for one sample on Chromosome 22.

o Even without a segmentation algorithm, —]
we can easily spot a deletion here.

M =log2(8/ &)

15 20 2% 30 35 40 45 20

Faosition (Mb)



If we don’t add up the alleles, we get allele-specific
estimates from which we can get genotypes

Example: (6;,,0,5) for one SNP across all samples

SNP_A-1652155

BB .
AB

0g2(64)



There are a lot of artifacts in microarray data
- can we do better?

Systematic variation can be added due to:
o Spatial artifacts

* Intensity dependent effects

* Probe-sequence dependent effects
 GC-content effects

 PCR effects

 Lab & people effects

e Non-calibrated scanners
. 2



Spatial artifacts (“extreme”)

http://plmimagegallery.bmbolstad.com/



Intensity dependent artifacts/variation
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Lab and people effects/variation
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PCR fragment length effects/variation

Figure 1: GeneChip® Mapping Assay Overview.
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“Wave” patterns along genome
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Probe-sequence effects/variation
- probes respond differently
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Low-Level
Copy Number Analysis

Part 3 — aroma.affymetrix

Henrik Bengtsson
Post doc, Department of Statistics,
University of California, Berkeley, USA

CEIT Workshop on SNP arrays,
Dec 15-17, 2008, San Sebastian




aroma.affymetrix processes
unlimited number of arrays

* Processes unlimited number of arrays
— Bounded memory algorithms.
— Works toward file system.
— Persistent memory: robust & picks up where last stopped.

 Memory requirements: 1.0-2.0GB RAM.
— Example: RMA on 4500 HG-U133A arrays uses ~500MB of RAM.
— Example: CRMA on 300 SNP6.0 arrays uses ~1.5GB of RAM.
— Example: FIRMA on 200 HuEx-1.0 arrays uses ~1.5GB of RAM.

e Cross platform : Linux/Unix, Windows, OSX.

» Supports most Affymetrix chip types
— All chip types with a CDF (and some more).
— Custom CDFs.



aroma.affymetrix "Iimplements"
several existing methods

« Calibration and normalization ]
— Background correction methods: RMA, gcRMA, ... e
— Allelic cross-talk calibration, quantile normalization, spatial normalizatio
probe-sequence normalization, ...
— PCR fragment-length normalization, GC-content normalization.

Probe-level summarization
— multiplicative (dChip), affine, and log-additive (RMA) models. Easy to add new.

Quality assessment
— RLE (Relative Log Expressions), NUSE (Normalized Unscaled Standard Error)
— Spatial plots: probe signals, PLM residuals, chip effects, CDF annotations, ...

Paired & non-paired copy-number analysis
— All SNP & CN platforms. Multiple chip types.
— CRMA (our methods for estimating raw CNSs).
— Allele-specific and/or total CN estimates
— Genotyping via CRLMM
— Segmentation method: CBS & GLAD. Easy to add more.

Miscellaneous :
— Alternative splicing (exon arrays): Finding Isoforms using RMA (FIRMA)
— Tiling-array analysis: MAT processing
— Resequencing arrays
— Gene expression arrays (of course)
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Walk-through example




Complete aroma.affymetrix script for copy-number analysis of
270 SNP6.0 samples

cdf <- AffymetrixCdfFile$byChipType("GenomeWideSNP_6" )
csR <- AffymetrixCelSet$byName("HapMap270", cdf=cdf)

acc <- AllelicCrosstalkCalibration(csR)
csC <- process(acc)

bpn <- BasePositionNormalization(csC)
csN <- process(bpn)

pim <- AvgCnPIm(csN, combineAlleles=TRUE)
fit(plm)

ces <- getChipEffectSet(plm)
fln <- FragmentLengthNormalization(ces)
cesN <- process(fln)

seg <- CbsModel(cesN)

ce <- ChromosomeExplorer(seq)
process(ce)



Offline & online dynamic HTML reports
Example: ChromosomeExplorer
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Setup Is as simple as placing the files in
a strict & standardized directory structure

annotationData/
chipTypes/
GenomeWideSNP_6/
GenomeWideSNP_6(CIDH-
GenomeWideSNP_6ll&P
GenomeWideSNP_6UHL

rawData/
HapMap270,CEl/
GenomeWideSNP_6/
* CEL



No (absolute) pathnames are used
- maximizes portability

annotationData/
chipTypes/
GenomeWideSNP_6/
GenomeWideSNP_6.CDF GenomeWideSNP _6.UGP ...

cdf <- AffymetrixCdfFile$byChipType("GenomeWideSNP_6"
print(cdf)

AffymetrixCdfFile:

Path: annotationData/chipTypes/GenomeWideSNP_6
Filename: GenomeWideSNP_6.cdf

Filesize: 470.44MB

File format: v4 (binary; XDA)

Chip type: GenomeWideSNP_6

Dimension: 2572x2680

Number of cells: 6892960

Number of units: 1881415



The file system is the memory
- data Is loaded only when needed

cdf <- AffymetrixCdfFile$byChipType("GenomeWideSNP_6"
csR <- AffymetrixCelSet$byName("HapMap270", cdf=cdf)

AffymetrixCelSet:
Name: HapMap270
Tags: CEU

Path: rawData/HapMap270,CEU/GenomeWideSNP_6
Chip type: GenomeWideSNP_6
Number of arrays: 270

Names: NA06985, NA06991, .... NA07019
Total file size: 17.7GB

RAM: 0.01MB



Normalized data is stored as CEL files
- Import to any software

acc <- AllelicCrosstalkCalibration(csR)
csC <- process(acc)

print(csC)

AffymetrixCelSet:

Name: HapMap270
Tags: CEU,ACC,ra,-XY

Path: probeData  /HapMap270,CEU, ACC ra,-XY [/GenomeWideSNP_6
Chip type: GenomeWideSNP_6
Number of arrays: 270

Names: NA06985, NA06991, ..., NA07019
Total file size: 17.7GB
RAM: 0.01MB

files <- getPathnames(csC)

print(files[1])

[1] "probeData/HapMap270,CEU,ACC,ra,-XY/
GenomeWideSNP_6/NA06985.CEL"



Data sets (directories) are marked
with unique tags

gn <- QuantileNormalization(csC)
csN <- process(gn)
print(csN)

AffymetrixCelSet:

Name: HapMap270

Tags: CEU,ACC,ra,-XY,ACC,QN

Path: probeData  /HapMap270,CEU,ACC ra,-XY,

Chip type: GenomeWideSNP_6
Number of arrays: 270

Names: NA06985, NA06991, ..., NA07019
Total file size: 17.7GB
RAM: 0.01MB

QNGenomeWideSNP_6



