Low-Level Copy Number Analysis

CRMA v2 preprocessing

Henrik Bengtsson

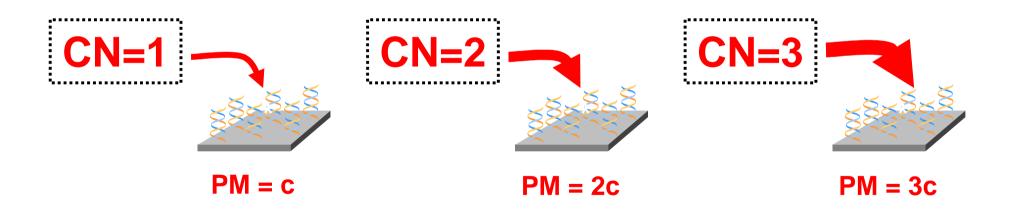
Post doc, Department of Statistics, University of California, Berkeley, USA

CEIT Workshop on SNP arrays, Dec 15-17, 2008, San Sebastian

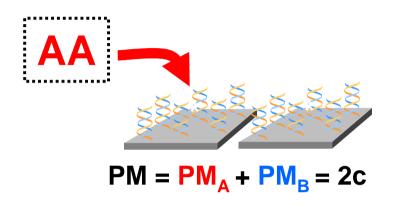
Copy-number probes are used to quantify the amount of DNA at known loci

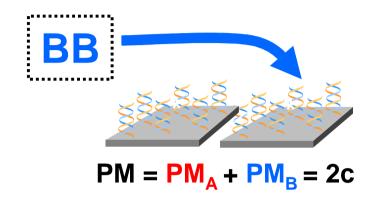
CN locus: ...CGTAGCCATCGGTAAGTACTCAATGATAG...

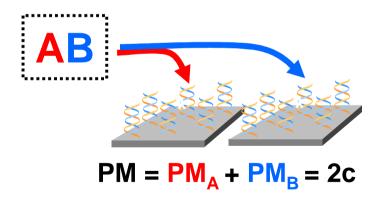
PM: ATCGGTAGCCATTCATGAGTTACTA

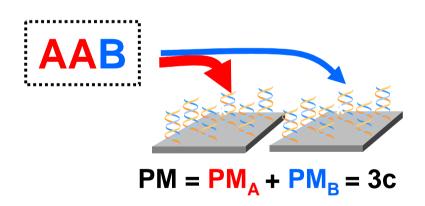


SNP probes can also be used to estimate total copy numbers









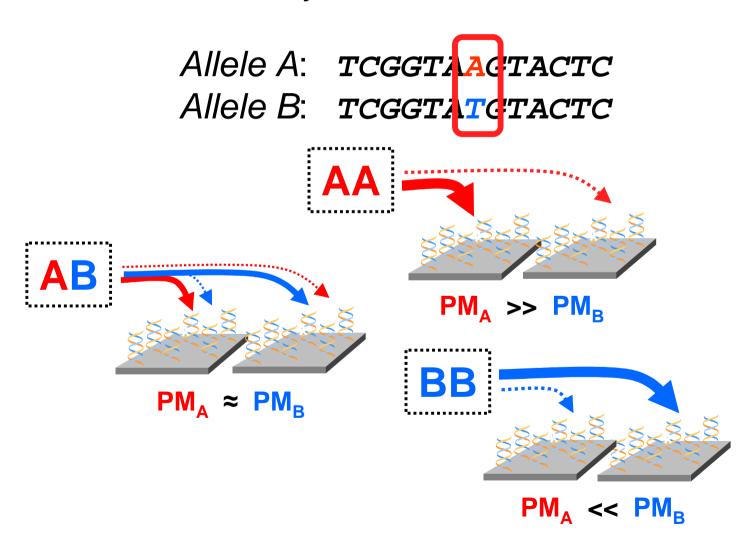
	CRMA v2
Preprocessing	1. Allelic crosstalk calibration
(probe signals)	2. Probe-sequence normalization
Summarization	Robust averaging:
	CN probes: $\theta_{ij} = PM_{ij}$
	SNPs: $\theta_{ijA} = \text{median}_k(PM_{ijkA})$
	$\theta_{ijB} = median_k(PM_{ijkB})$
	array <i>i</i> , loci <i>j</i> , probe <i>k.</i>
Post-processing	PCR fragment-length normalization
Transform	$(\theta_{ijA}, \theta_{ijB}) => (\theta_{ij}, \beta_{ij})$
	$\theta_{ij} = \theta_{ijA} + \theta_{ijB}, \ \beta_{ij} = \theta_{ijB} / \theta_{ij}$
Allele-specific &	$C_{ijA} = 2^*(\theta_{ijA}/\theta_{Rj})$ and $C_{ijB} = 2^*(\theta_{ijA}/\theta_{Rj})$
total CNs	$C_{ij} = 2^*(\theta_{ij}/\theta_{Rj})$ reference R

Allelic crosstalk calibration

Crosstalk between alleles

- adds significant artifacts to signals

Cross-hybridization:

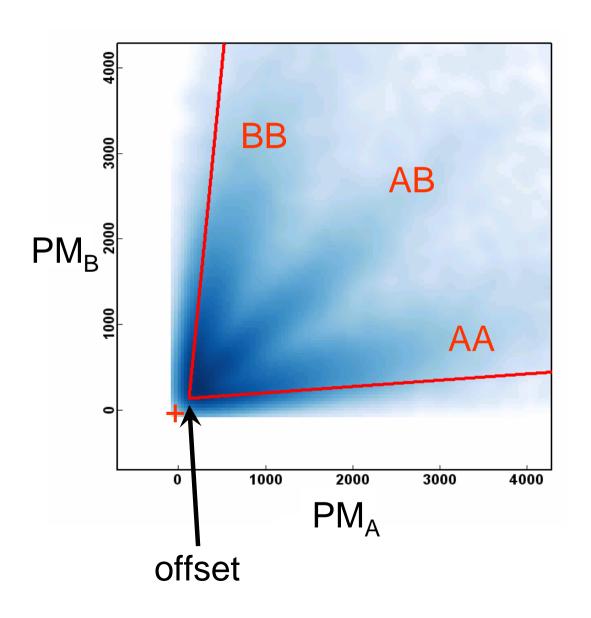


There are six possible allele pairs

- Nucleotides: {A, C, G, T}
- Ordered pairs:
 - -(A,C), (A,G), (A,T), (C,G), (C,T), (G,C)

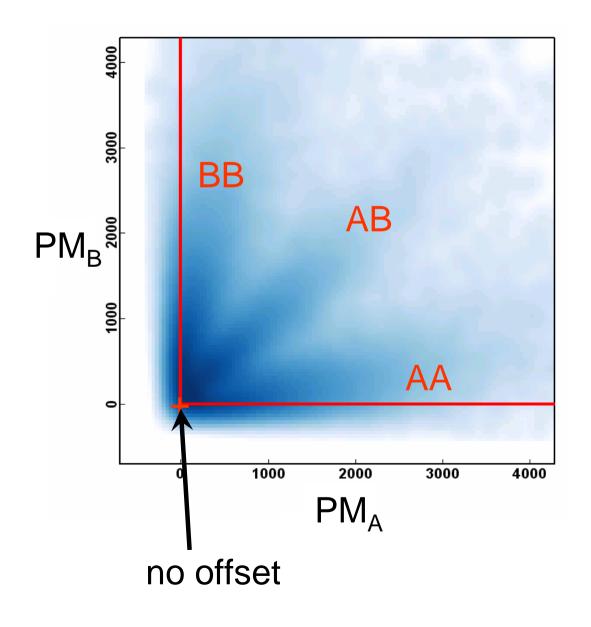
 Because of different nucleotides bind differently, the crosstalk from A to C might be very different from A to T.

Crosstalk between alleles is easy to spot



Example:
Data from <u>one array</u>.
Probe pairs (PM_A, PM_B)
for <u>nucleotide pair</u> (A,T).

Crosstalk between alleles can be estimated and corrected for



What is done:

- 1. **Offset is removed** from SNPs and CN units.
- 2. Crosstalk is removed from SNPs.

aroma.affymetrix

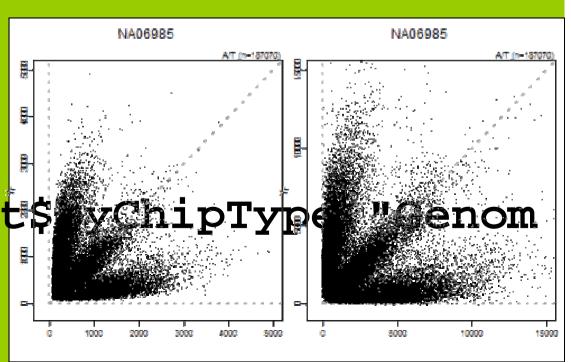
You will need:

- Affymetrix CDF, e.g. GenomeWideSNP_6.cdf
- Probe sequences*, e.g.
 GenomeWideSNP_6.acs

Calibrate CEL files:

cdf <AffymetrixCdfSet\$ vChipType
eWideSNP_6")</pre>

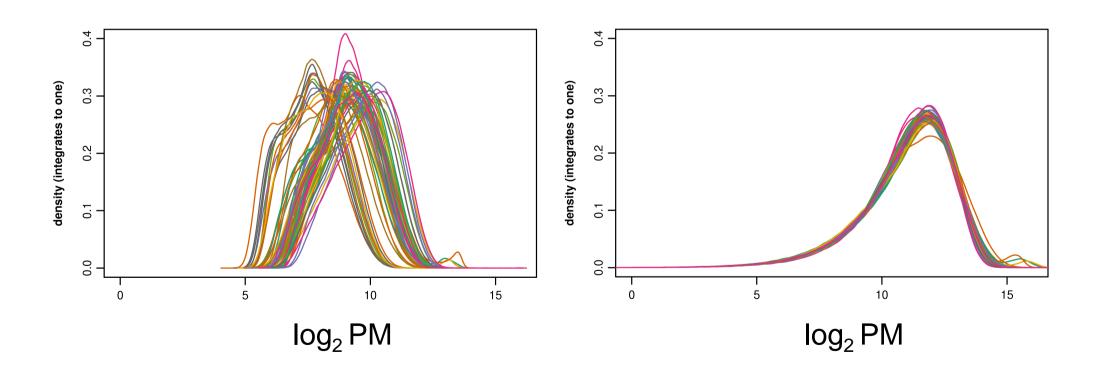
csR <-



Crosstalk calibration corrects for differences in distributions too

Before removing crosstalk the arrays differ significantly...

...when removing offset & crosstalk differences goes away.



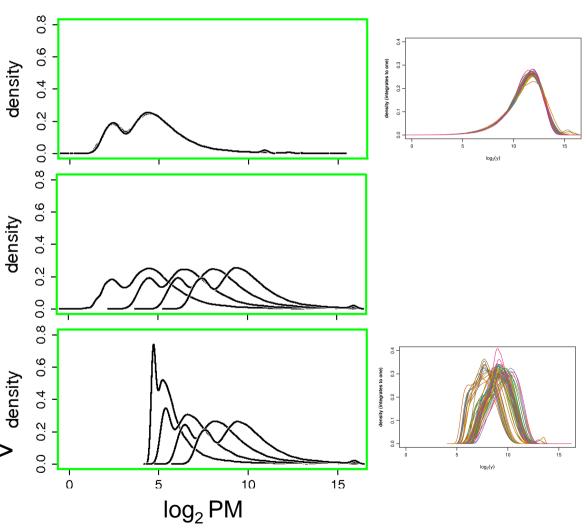
How can a translation and a rescaling make such a big difference?

4 measurements of the **same thing**:

With **different scales**: log(b*PM) = log(b) + log(PM)

With **different scales** and **some offset**:

log(a+b*PM) = < non-linear >



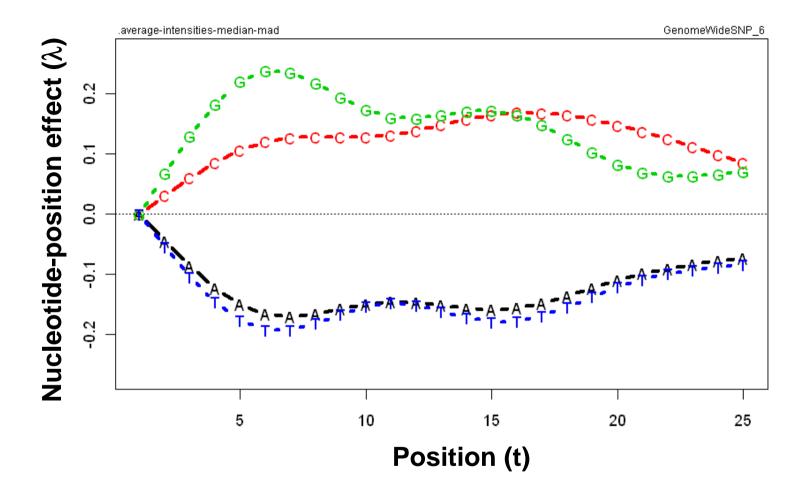
Take home message

Allelic crosstalk calibration controls for:

- 1) offset in signals
- 2) crosstalk between allele A and allele B.

Probe sequence normalization

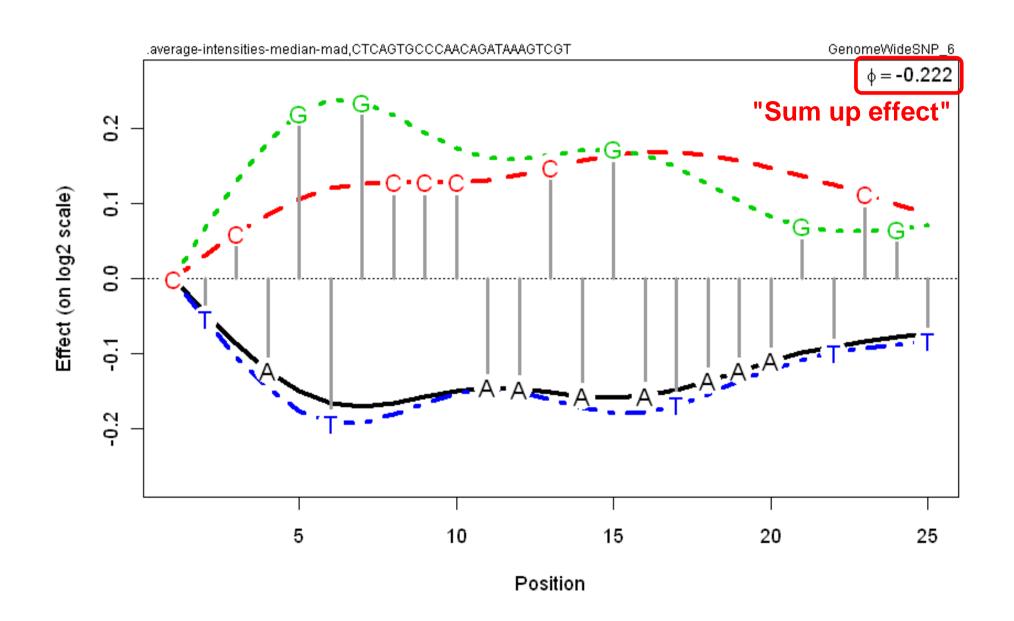
Nucleotide-Position Model



Probe-position (log₂) affinity for probe k:

$$\phi_k = \phi((b_{k,1}, b_{k,2}, ..., b_{k,25})) = \sum_{t=1..25} \sum_{b=\{ACGT\}} I(b_{k,t}=b) \lambda_{b,t}$$

Example: Probe-position affinity for CTCAGTGCCCAACAGATAAAGTCGT

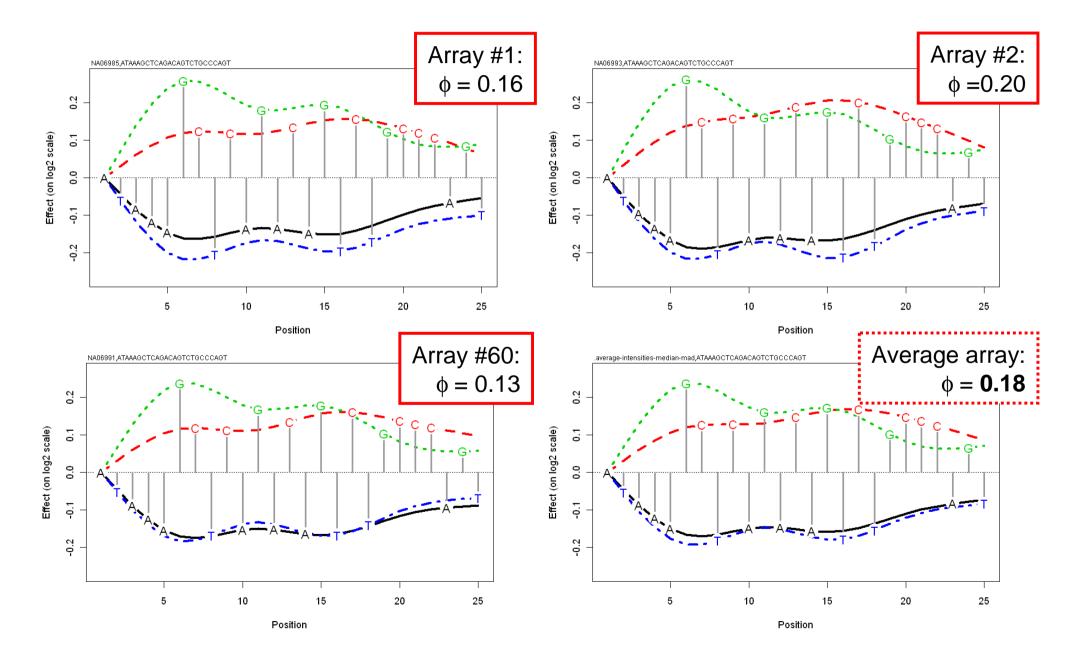


Probe-sequence normalization helps

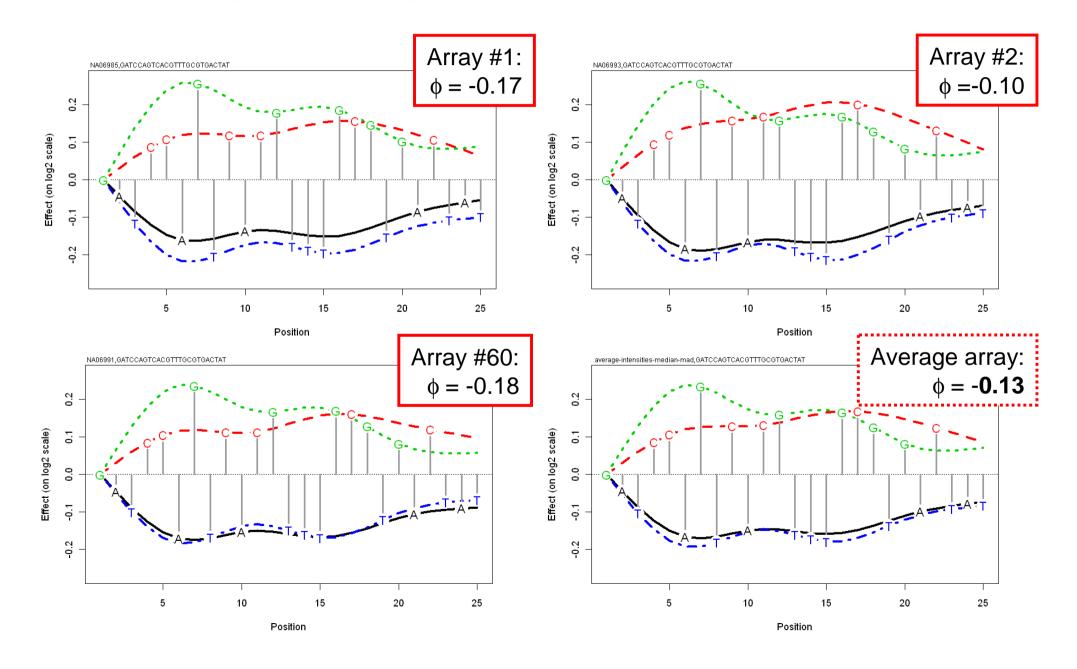
- 1. The effects differ slightly across arrays:
 - adds extra across-array variances
 - will be removed
- 2. The effects differ between PM_A and PM_B:
 - introduces genotypic imbalances such that
 PM_A+PM_B will differ for AA, AB & BB.
 - will be removed

BPN controls for across array variability

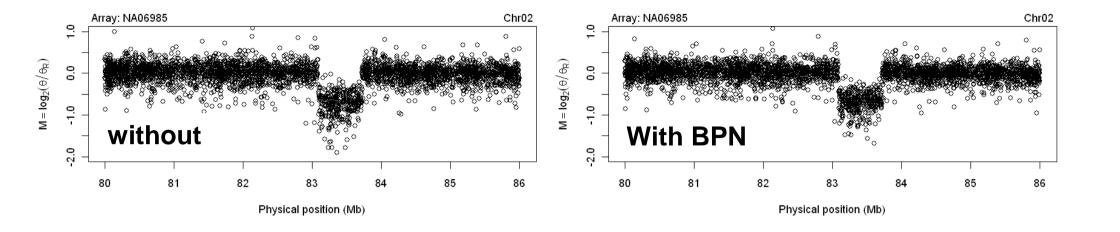
The nucleotide-position effect differ between arrays

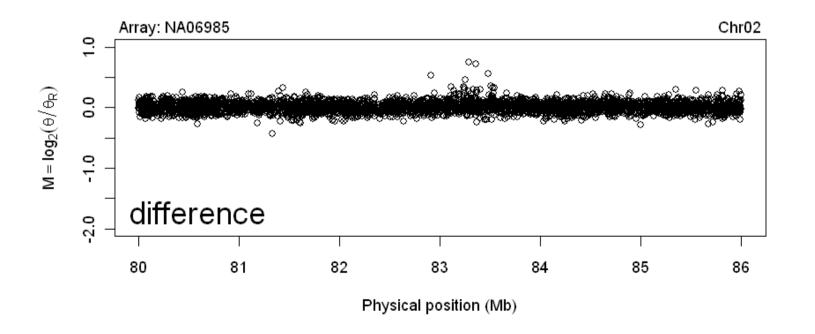


The <u>impact</u> of these effects varies with probe sequence

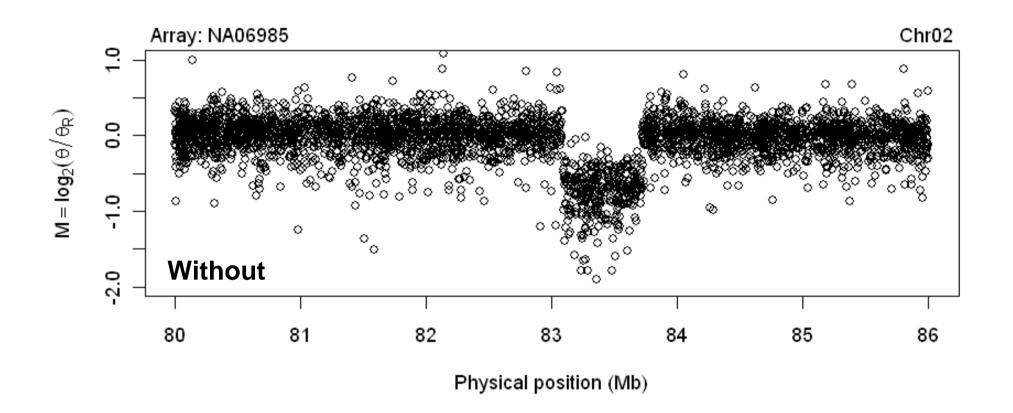


There is a noticeable difference in raw CNs before and after normalization

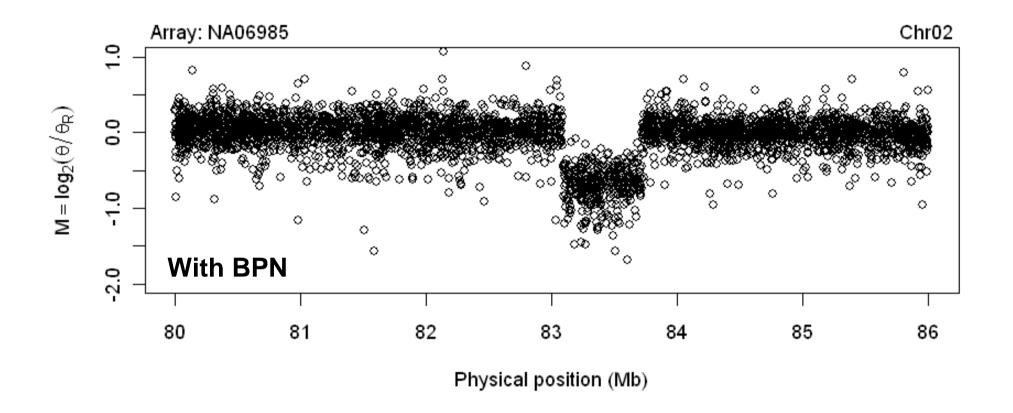




There is a noticeable difference in raw CNs before and after normalization

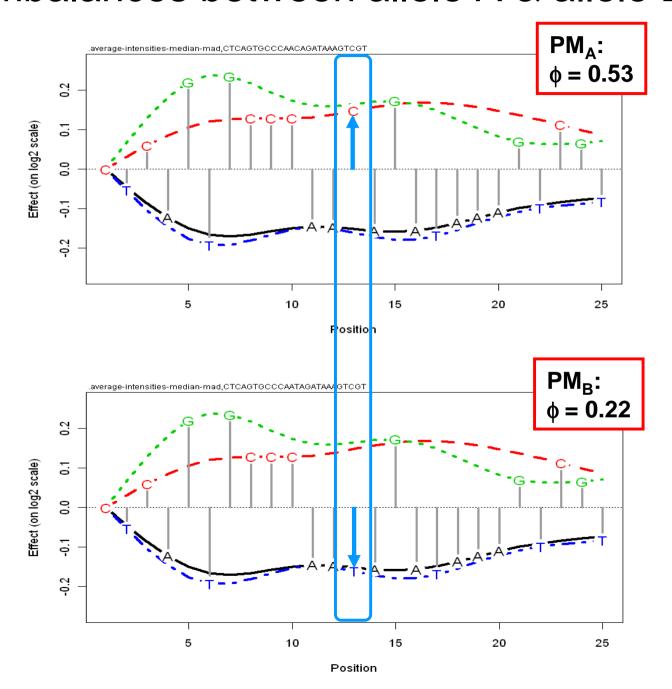


There is a noticeable difference in raw CNs before and after normalization



2. BPN controls for allele A and allele B imbalances

Nucleotide-position normalization controls for imbalances between allele A & allele B



Genotypic imbalances:

 $PM=PM_A+PM_B$:

AA: 0.53+0.53 = 1.06

AB: 0.53+0.22 = 0.75

BB: 0.22+0.22 = 0.44

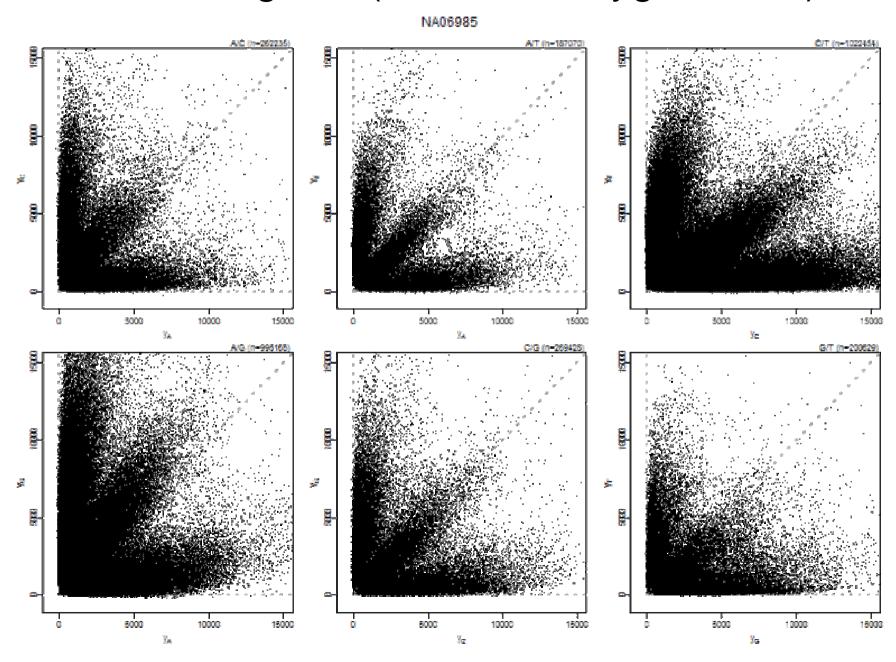
Thus, AA signals are 2^(1.06-0.44) = 2^0.62 = 1.54 times stronger than BB signals.

(i) Before calibration there is crosstalk

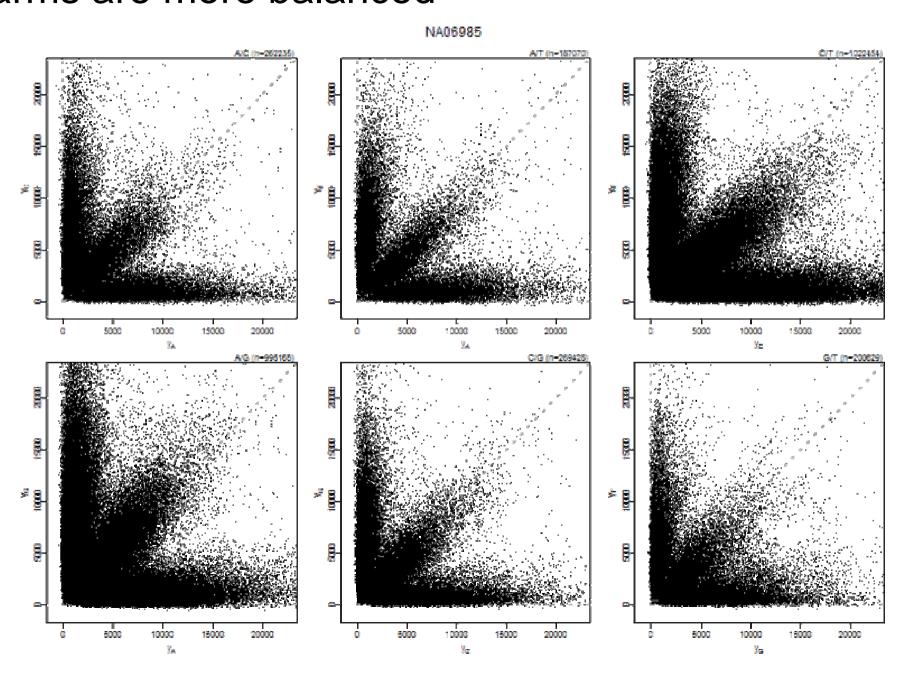
- pairs AC, AG, AT, CG, CT & GT



(ii) After calibration the homozygote arms are more orthogonal (note heterozygote arm!)



(iii) After sequence normalization the heterozygote arms are more balanced



aroma.affymetrix

You will need:

- Affymetrix CDF, e.g. GenomeWideSNP_6.cdf
- Probe sequences*, e.g. GenomeWideSNP_6.acs

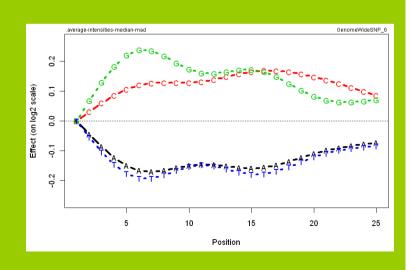
Normalize CEL files:

```
bpn <- BasePositionNormalization(csC, target="zero")
csN <- process(bpn)</pre>
```

Works with any chip type, e.g. resequencing, exon, expression, SNP.

To plot:

```
fit <- getFit(bpn, array=1)
plot(fit)</pre>
```



Probe summarization

Probe summarization (on the new arrays)

- CN units: All single-probe units:
 - Chip-effect estimate: $\theta_{ij} = PM_{ij}$
- SNPs: Identically replicated probe pairs:
 - Probe pairs: (PM_{ijkA},PM_{ijkB}); k=1,2,3
 - Allele-specific estimates:
 - $\theta_{ijA} = median_k \{PM_{ijkA}\}$
 - $\theta_{ijB} = median_k \{PM_{ijkB}\}$

aroma.affymetrix

You will need:

• Affymetrix CDF, e.g. GenomeWideSNP_6.cdf

Summarizing probe signals:

```
plm <- AvgCnPlm(csN, combineAlleles=FALSE)
fit(plm)

ces <- getChipEffectSet(plm)
theta <- extractTheta(ces)</pre>
```

Probe-level summarization (10K-500K)

- (if) replicated probes respond differently

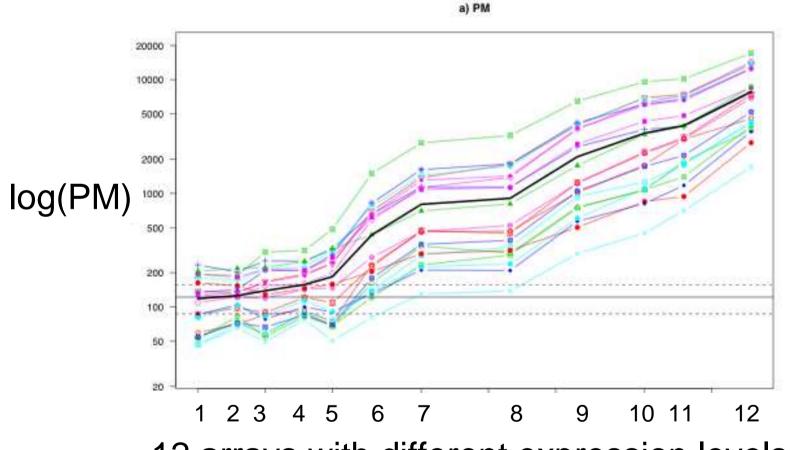
For a particular SNP we now have K added signals:

$$(PM_1, PM_2, ..., PM_K)$$

which are measures of the same thing - the CN. However, they have slightly different sequences, so their hybridization efficiency might differ.

Probe-level summarization

- different probes respond differently



12 arrays with different expression levels

18 probes for the same probe set

Example:

$$log_{2}(PM_{1}) = log_{2}(PM_{2}) + a_{1}$$

=> $PM_{1} = \phi_{1}*PM_{2}$
 $(\phi_{1} = 2^{a_{1}})$

Probe-level summarization

- probe affinity model

For a particular SNP, the total CN signal for sample i=1,2,...,l is:

 θ_{i}

Which we observe via K probe signals:

 $(PM_{i1}, PM_{i2}, ..., PM_{iK})$

rescaled by probe affinities:

 $(\phi_1, \phi_2, ..., \phi_K)$

A multiplicative model for the observed PM signals is then:

$$PM_{ik} = \phi_k * \theta_i + \xi_{ik}$$

where ξ_{ik} is noise.

Probe-level summarization

- the log-additive model

For one SNP, the model is:

$$PM_{ik} = \phi_k * \theta_i + \xi_{ik}$$

Take the logarithm on both sides:

$$log_{2}(PM_{ik}) = log_{2}(\phi_{k} * \theta_{i} + \xi_{ik})$$

$$\frac{1}{4} log_{2}(\phi_{k} * \theta_{i}) + \varepsilon_{ik}$$

$$= log_{2}\phi_{k} + log_{2}\theta_{i} + \varepsilon_{ik}$$

Sample i=1,2,...,I, and probe k=1,2,...,K.

Probe-level summarization

- the log-additive model

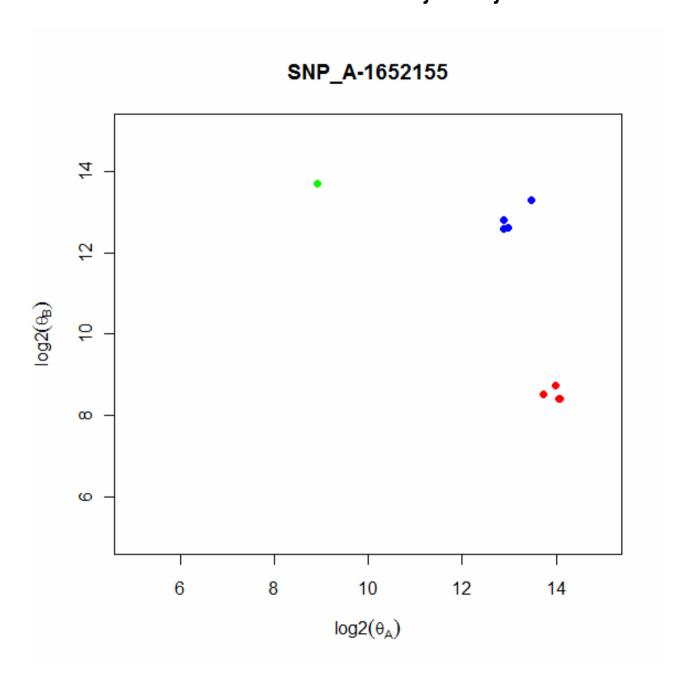
With multiple arrays i=1,2,...,I, we can estimate the probe-affinity parameters $\{\phi_k\}$ and therefore also the "chip effects" $\{\theta_i\}$ in the model:

$$log_2(PM_{ik}) = log_2\phi_k + log_2\theta_i + \varepsilon_{ik}$$

Conclusion: We have summarized signals (PM_{Ak}, PM_{Bk}) for probes k=1,2,...,K into one signal θ_i per sample.

Very brief on existing genotyping algorithms

Allele-specific estimates $(\theta_{ijA}, \theta_{ijB})$



Idea of RLMM, BRLMM, CRLMM

Find genotype regions for each SNP:

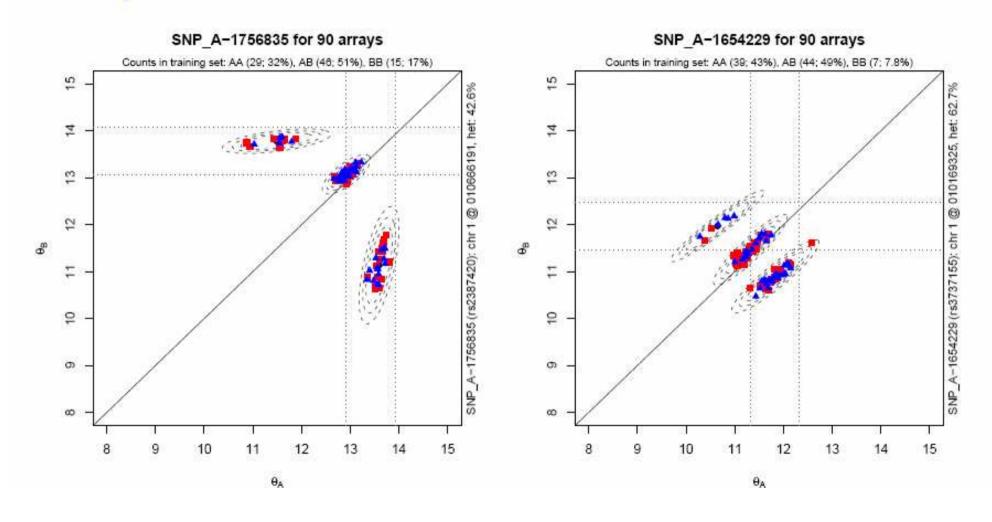
- Pick a high-quality training data set for which we know the true genotypes, e.g. the 270 HapMap samples.
- Estimate $(\theta_{iiA}, \theta_{iiB})$ for all samples and SNPs.
- For each SNP, find the regions for all samples with AA, then with AB, and the with BB.
 - The regions will differ slightly between SNPs.
- (Bayesian modelling of prior SNP regions)

For a new sample:

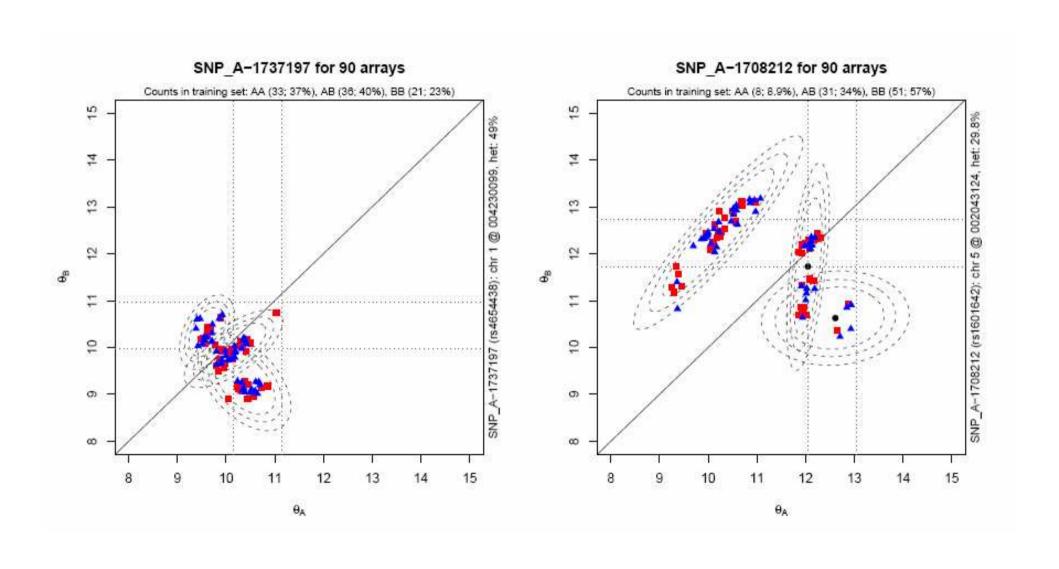
• For each SNP, identify the trained genotype region that is closest to its $(\theta_{iiA}, \theta_{iiB})$. That will be the genotype.

Calling genotyping in $(\theta_{ijA}, \theta_{ijB})$

Example: Two SNPs on chromosome 1

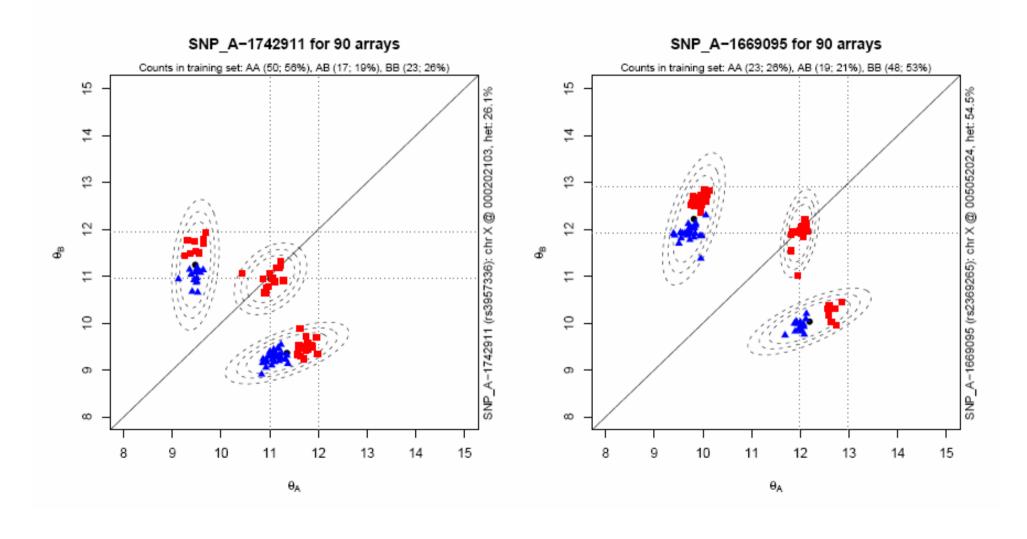


For some SNPs it is harder to distinguish the genotype groups



Careful: Genotyping algorithms often assume diploid states, not CN aberrations

Example: Two SNPs on chromosome X

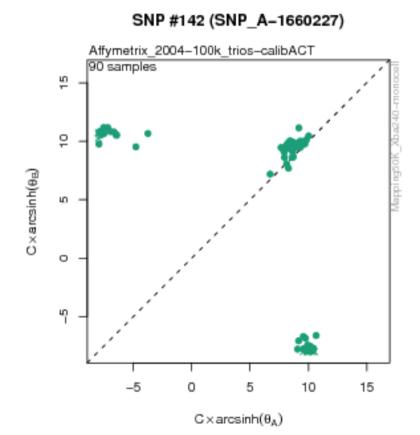


Crosstalk calibration (incl. the removal of the offset) gives better separation of AA, AB, BB.

Without calibration:

With calibration:

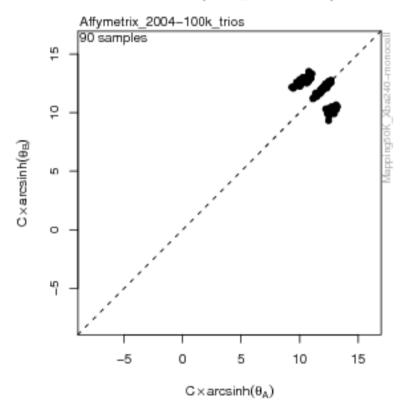




A more suttle example

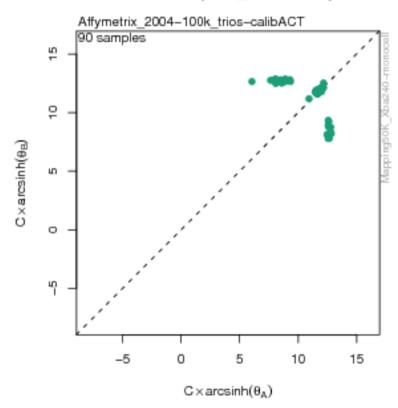
Without calibration:

SNP #173 (SNP_A-1681774)



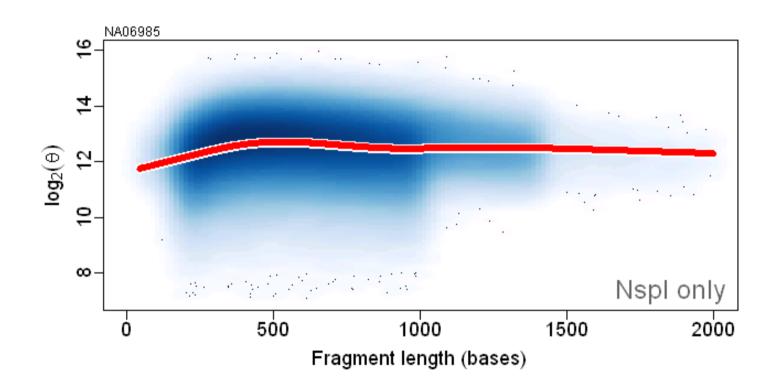
With calibration:

SNP #173 (SNP_A-1681774)



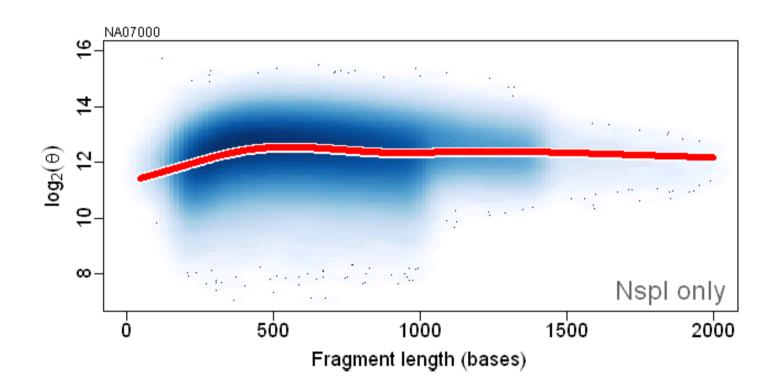
Fragment length normalization

Longer fragments are amplified less by PCR Observed as weaker θ signals



Note, here we study the effect on non-polymorphic signals, that is, for SNPs we first do $\theta_{ij} = \theta_{ijA} + \theta_{ijB}$.

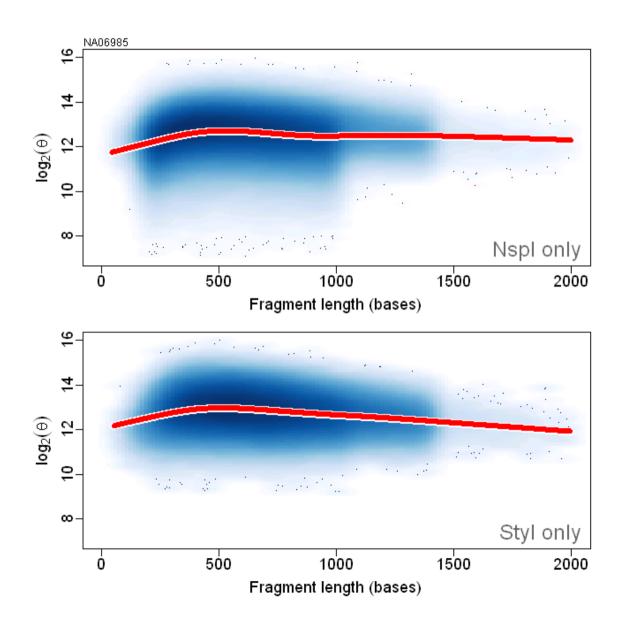
Slightly different effects between arrays adds extra variation



Fragment-length normalization for multi-enzyme hybridizations

- For GWS5 and GWS6, the DNA is fragmented using two enzymes.
- For all CN probes, all targets originate from Nspl digestion.
- For SNP probes, some targets originate exclusively from Nspl, exclusively from Styl, or from both Nspl and Styl.

Fragment-length effects for co-hybridized enzymes are assumed to be additive



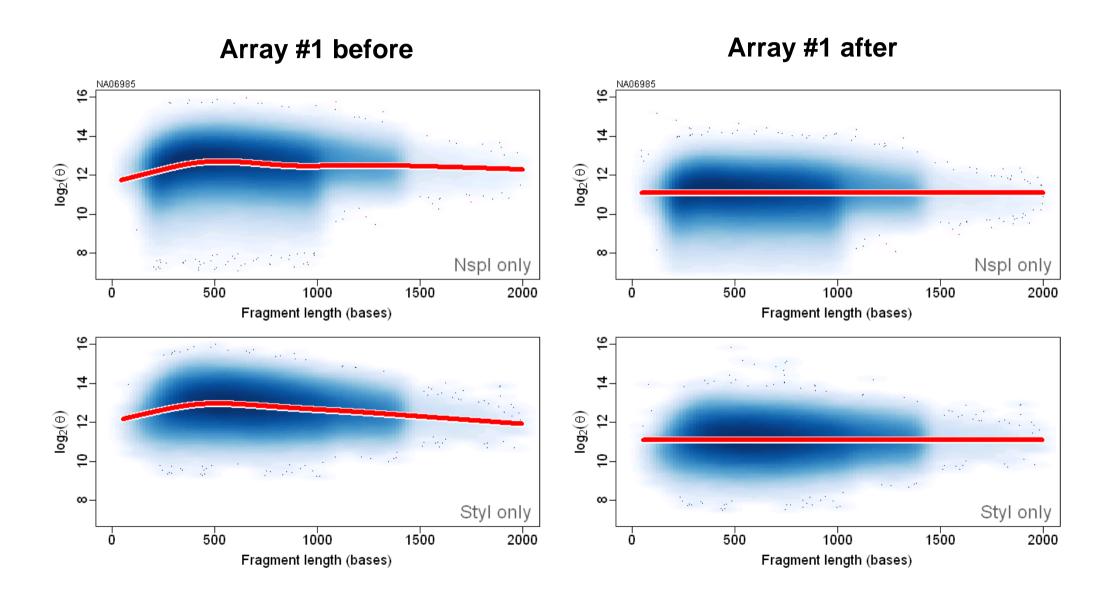
Fragment-length normalization for co-hybridized enzymes

Multi-enzyme normalization model:

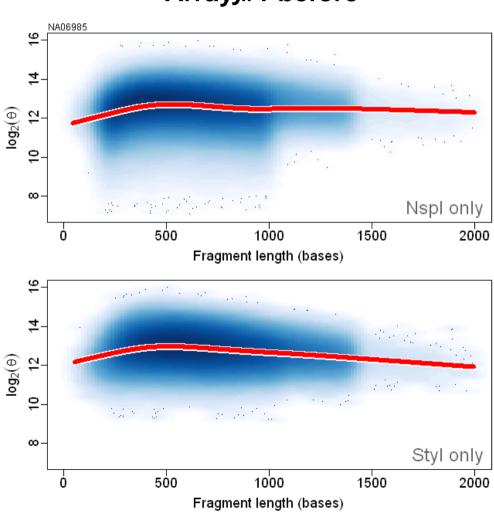
$$\begin{split} \log_2 \theta_j^* \leftarrow \log_2 \theta_j - \delta^* \\ \delta^* = \delta(\lambda_{\text{Nsp},j}, \, \lambda_{\text{Sty},j}) = \text{correction} \end{split}$$

 λ_{Nsp} , λ_{Sty} = fragment lengths in *Nsp*I and *Sty*I.

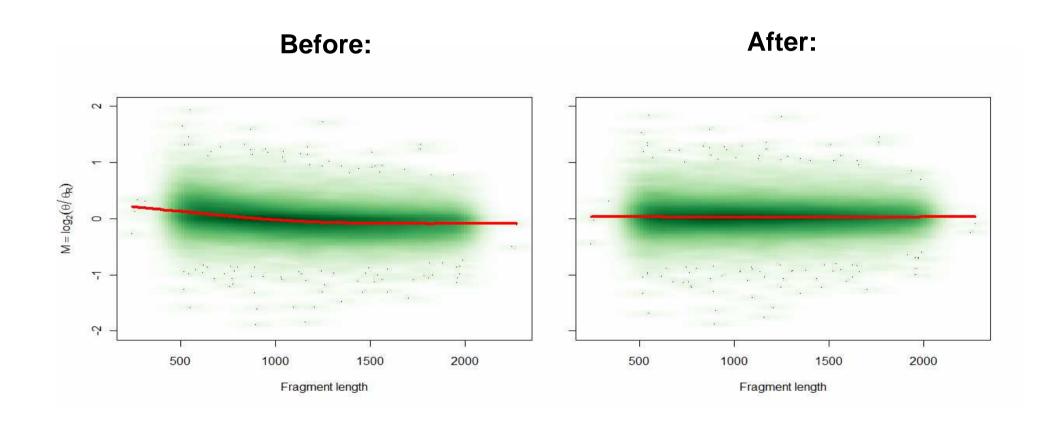
Multi-enzyme fragment-length normalization removes the effects

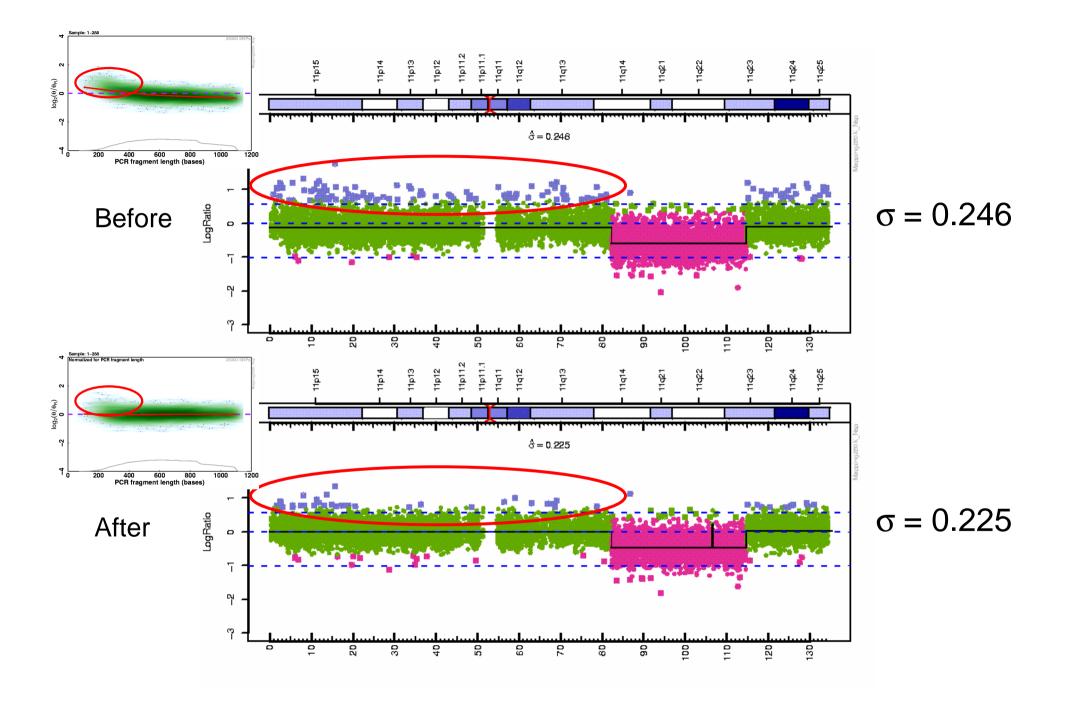


Multi-enzyme fragment-length normalization removes the effects



Removing the effect on the chip effects, will also remove the effect on CN log ratios





aroma.affymetrix

You will need:

- Affymetrix CDF, e.g. GenomeWideSNP_6.cdf
- A Unit Fragment Length file, e.g. GenomeWideSNP_6.ufl

```
fln <- FragmentLengthNormalization(ces, target="zero")
cesN <- process(fln)</pre>
```

Finally, a convenient transform

Bijective transform of $(\theta_{ijA}, \theta_{ijB})$ in to $(\theta_{ij}, \beta_{ij})$.

Transform $(\theta_{ijA}, \theta_{ijB})$ to $(\theta_{ij}, \beta_{ij})$ by:

Non-polymorphic SNP signal: $\theta_{ij} = \theta_{ijA} + \theta_{ijB}$ Allele B frequency signal: $\beta_{ij} = \theta_{ijB} / \theta_{ij}$

A CN probe does not have a β_{ij} . However, both CN probes and SNPs have a non-polymorphic signal θ_{ii} .

We expect the following:

Genotype BB: $\theta_{ijB} >> \theta_{ijA} => \beta_{ij} \approx 1$

Genotype AA: $\theta_{ijB} \ll \theta_{ijA} => \beta_{ij} \approx 0$

Genotype AB: $\theta_{ijB} \approx \theta_{ijA} => \beta_{ij} \approx \frac{1}{2}$

Thus, θ_{ij} carry information on CN and β_{ij} on genotype.

Copy numbers are estimated relative to a reference

Relative copy numbers:

$$C_{ij} = 2^*(\theta_{ij} / \theta_{Rj})$$

Alternatively, log-ratios:

$$M_{ij} = log_2(\theta_{ij} / \theta_{Rj})$$

Note: C_{ij} is defined also when $\theta \le 0$, but M_{ij} is not.

Array i=1,2,...,I. Locus j=1,2,...,J.

Allele-specific copy numbers

Allele-specific copy numbers (C_{ijA}, C_{ijB}) :

$$C_{ijA} = 2*(\theta_{ijA} / \theta_{Rj})$$

$$C_{ijB} = 2*(\theta_{ijB} / \theta_{Rj})$$

Note that,

1.
$$C_{ij} = C_{ijA} + C_{ijB} = 2^*(\theta_{ijA} + \theta_{Rj}) / \theta_{Rj} = 2^*(\theta_{ij} / \theta_{Rj})$$

2.
$$C_{ijB}/C_{ij} = [2^*(\theta_{ijB}/\theta_{Rj})]/[2^*(\theta_{ij}/\theta_{Rj})] = \theta_{ijB}/\theta_{ij} = \beta_{ij}$$

3.
$$C_{ijB} = 2^*(\theta_{ijB} / \theta_{ij})^*(\theta_{ij} / \theta_{Rj}) = \beta_{ij}^* C_{ij}$$

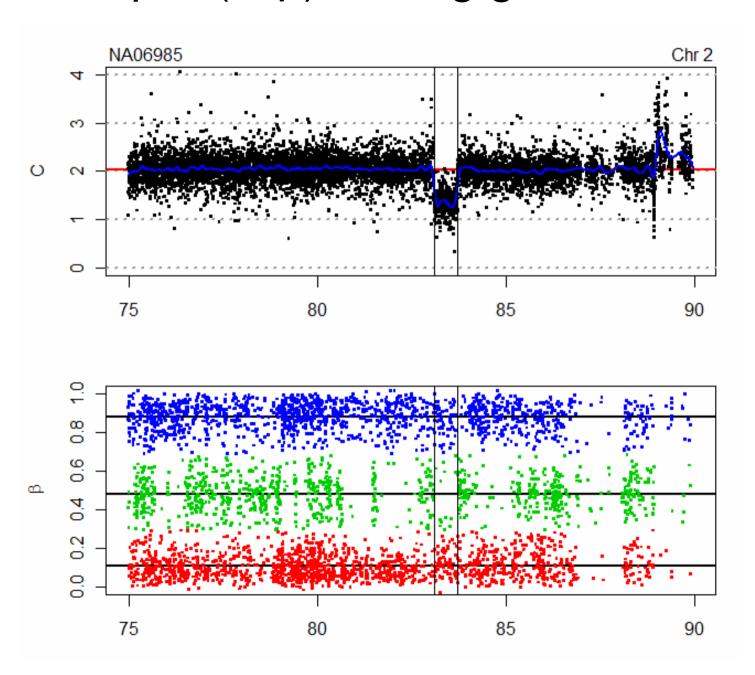
aroma.affymetrix

You will need:

- Affymetrix CDF, e.g. GenomeWideSNP_6.cdf
- A Unit Genome Position file, e.g. GenomeWideSNP_6.ugp

```
data <- extractTotalAndFreqB(cesN)</pre>
theta <- data[,"total",]</pre>
freqB <- data[,"freqB",]</pre>
Plot Array 3 along chromosome 2
gi <- getGenomeInformation(cdf)</pre>
units <- getUnitsOnChromosome(gi, 2)</pre>
pos <- getPositions(gi, units)</pre>
plot(pos, theta[units,3])
plot(pos, freqB[units,3])
```

CN and freqB - (C,β) - along genome



Selecting reference samples

The choice of reference sample(s) is important

- A real example from my postdoc projects

Data set:

- 3 Affymetrix 250K Nsp arrays.
- Processed at the AGRF / WEHI, Melbourne, Australia.

Reference sets:

- Public: 270 normal HapMap arrays ("gold standard").
- In-house: 11 anonymous/unknown(!) AGRF arrays.

set:

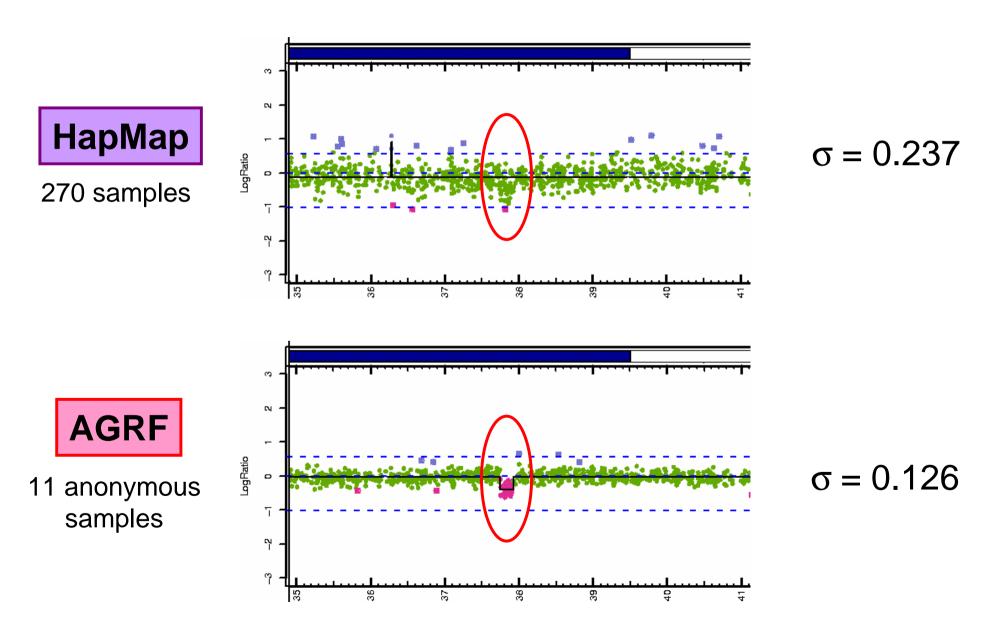
(i) 11 in-house samples and (i) 270 HapMap

samples

sample	chr	length	#SNPs	log2CN		AGRF	НарМар
А	9	1,023	3	0.50	gain	Х	
А	20	5,161	3	-0.47	loss	Х	
А	13	10,770	3	0.50	gain	Х	
А	10	26,774	3	-0.25	loss	Х	
А	5	34,423	3	-0.44	loss	Х	
В	4	47,982	3	0.65	gain	Х	
В	14	22,269	5	0.45	gain	X	X
А	6	37,028	6	-0.34	loss	Х	
С	6	37,028	6	-0.32	loss	Х	
С	3	38,218	7	-0.39	loss	Х	
А	3	39,082	8	-0.43	loss	Х	
А	11	21,357	11	-0.30	loss	Х	
А	10	90,838	12	0.29	gain	X	
А	14	153,137	25	0.41	gain	X	X
В	14	153,137	25	0.76	gain	Х	X
С	14	153,137	25	0.55	gain	Х	X
В	22	225,133	31	0.37	gain	X	
В	13	297,921	36	-0.30	loss	Х	
В	8	171,547	37	-0.34	loss	Х	
А	14	411,453	70	-0.21	loss	Х	
А	23	2,696,994	169	0.34	loss	X	
С	23	2,696,994	169	0.40	gain	X	poorly
В	11	32,485,465	3823	-0.39	loss	X	X
А	21	37,006,554	3936	0.17	trisomy	/ X	
Count						25	6
Fraction						100%	24%

Stronger signal with in-house reference set

Example: A 37 SNP deletion on chr 8



Conclusion

It is better to use a small, even unknown, reference set from the same microarray lab than an external reference set.

Summary of CRMA v2

	CRMA v2			
Preprocessing	1. Allelic crosstalk calibration			
(probe signals)	2. Probe-sequence normalization			
Summarization	Robust averaging:			
	CN probes: $\theta_{ij} = PM_{ij}$			
	SNPs: $\theta_{ijA} = \text{median}_k(PM_{ijkA})$			
	$\theta_{ijB} = median_k(PM_{ijkB})$			
	array <i>i</i> , loci <i>j</i> , probe <i>k.</i>			
Post-processing	PCR fragment-length normalization			
Transform	$(\theta_{ijA}, \theta_{ijB}) => (\theta_{ij}, \beta_{ij})$			
	$\theta_{ij} = \theta_{ijA} + \theta_{ijB}, \ \beta_{ij} = \theta_{ijB} / \theta_{ij}$			
Allele-specific &	$C_{ijA} = 2^*(\theta_{ijA}/\theta_{Rj})$ and $C_{ijB} = 2^*(\theta_{ijA}/\theta_{Rj})$			
total CNs	$C_{ij} = 2^*(\theta_{ij}/\theta_{Rj})$ reference R			

Single array method

CRMA v2 is a single-array preprocessing method

- CRMA v2 estimates chip effects of one array independently of other arrays.
 - It does <u>not</u> use prior parameter estimates etc.
 - A reference signals is only needed when calculating relative CNs, i.e. $C_i = 2^*(\theta_i/\theta_R)$.

Implications:

- Tumor/normal studies can be done with only two hybrizations.
- No need to rerun analysis when new arrays are added.
- Large data sets can be processed on multiple machines.

Evaluation

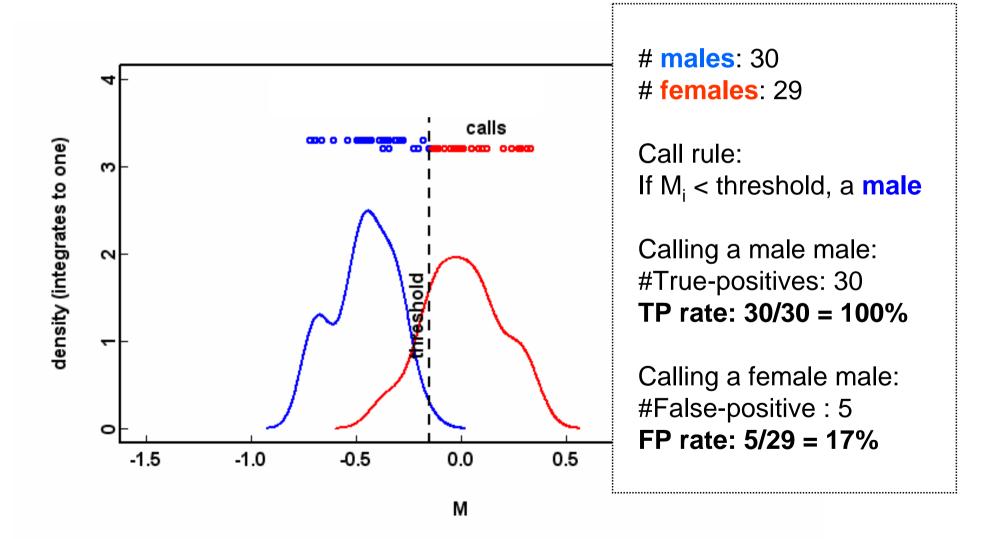
Other methods

	single-array	multi-array	multi-array
	CRMA v2	<i>dChip</i> (Li & Wong 2001)	CN5 (Affymetrix 2006)
Preprocessing (probe signals)	allelic crosstalk. probe-seq norm.	invariant-set	quantile
Summarization (SNP signals θ) and total CNs	i) Robust avg. ii) θ=θ _A +θ _B	i) PM=PM _A +PM _B ii) multiplicative	i) log-additive ii) $\theta = \theta_A + \theta_B$
Post-processing	fragment-length. (GC-content)	-	fragment-length. GC-content. Enzyme seq normalization. Genome "wave" normalization
Raw total CNs	$M_{ij} = log_2(\theta_{ij}/\theta_{Rj})$ $[C_{ij} = 2^*(\theta_{ij}/\theta_{Rj})]$	$M_{ij} = log_2(\theta_{ij}/\theta_{Rj})$	$M_{ij} = log_2(\theta_{ij}/\theta_{Rj})$

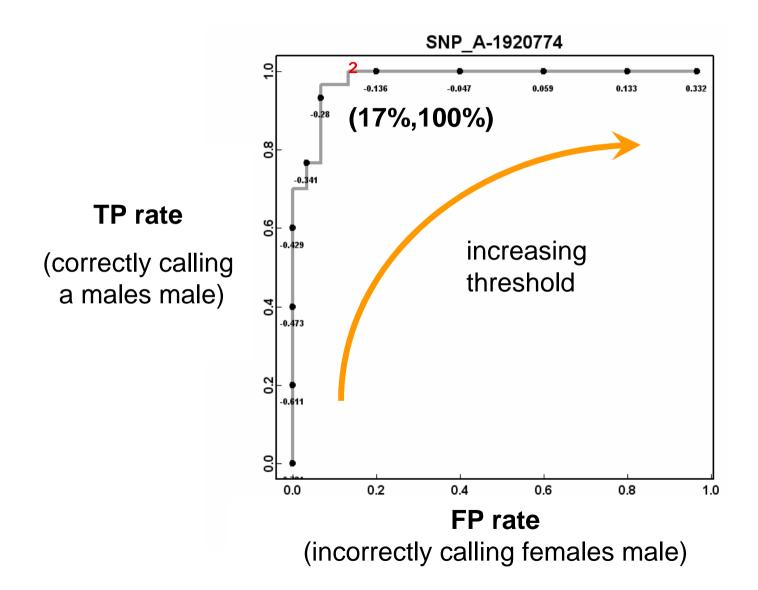
How well can detect CN changes compare with other methods?

- Other methods:
 - Affymetrix ("CN5") estimates (software GTC v3).
 - dChip estimates (software dChip 2008).
- Data set:
 - 59 GWS6 HapMap samples (29 females & 30 males).
- Evaluation:
 - How well can we detect:
 - CN=1 among CN=2 (ChrX), and
 - CN=0 among CN=1 (ChrY)?
 - At full resolution and various amounts of smoothing.

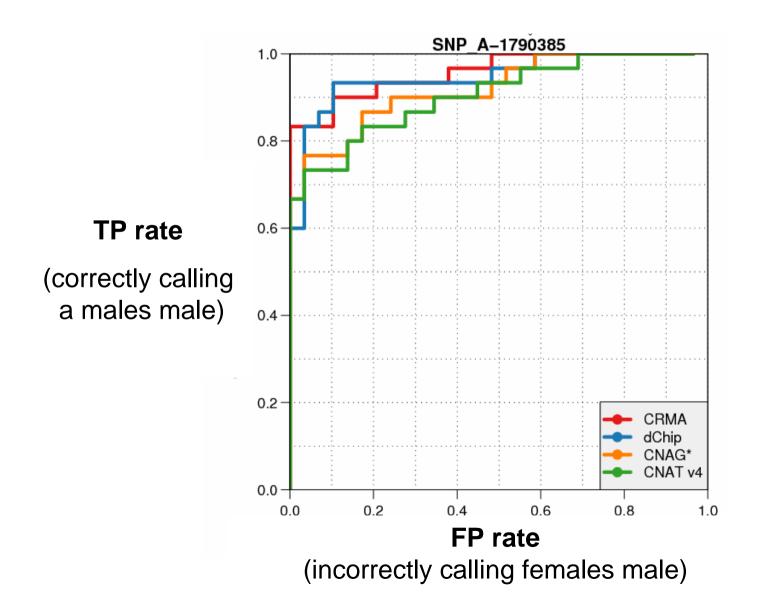
Calling samples for SNP_A-1920774



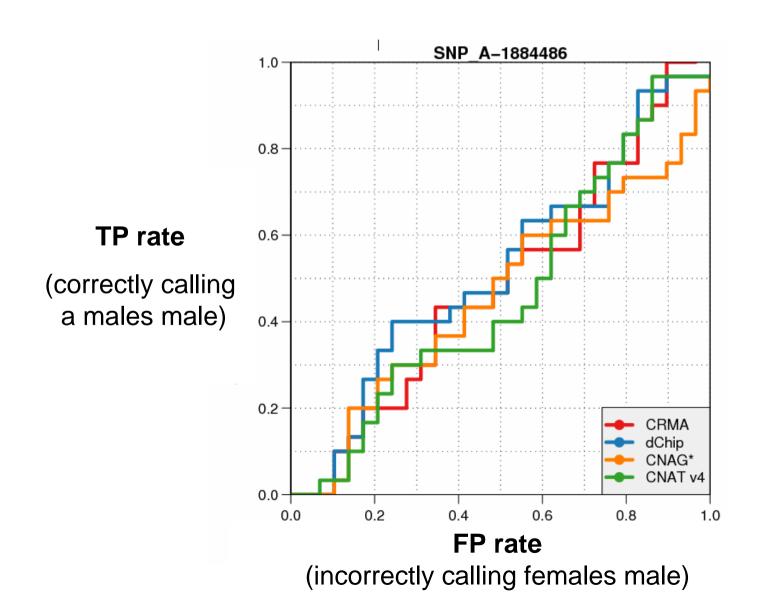
Receiver Operator Characteristic (ROC)



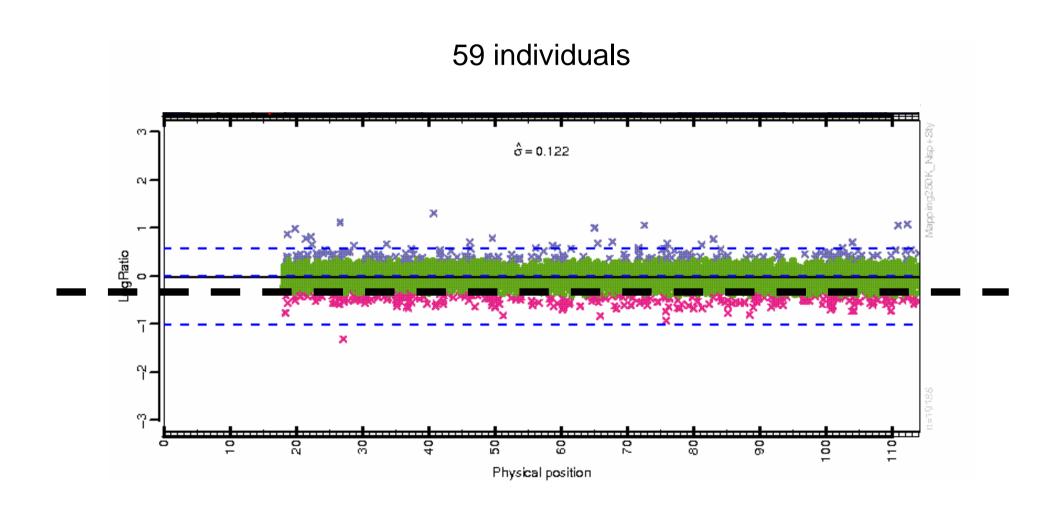
Single-SNP comparison A random SNP



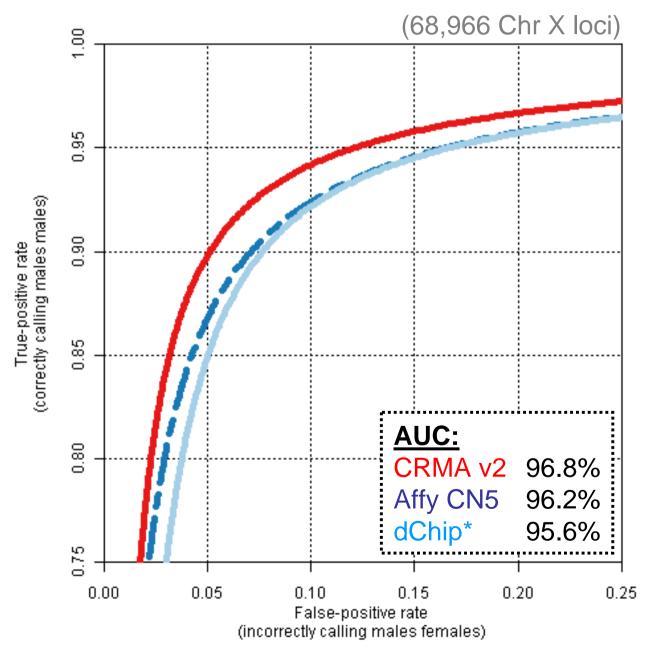
Single-SNP comparison A non-differentiating SNP



Performance of an average SNP with a common threshold



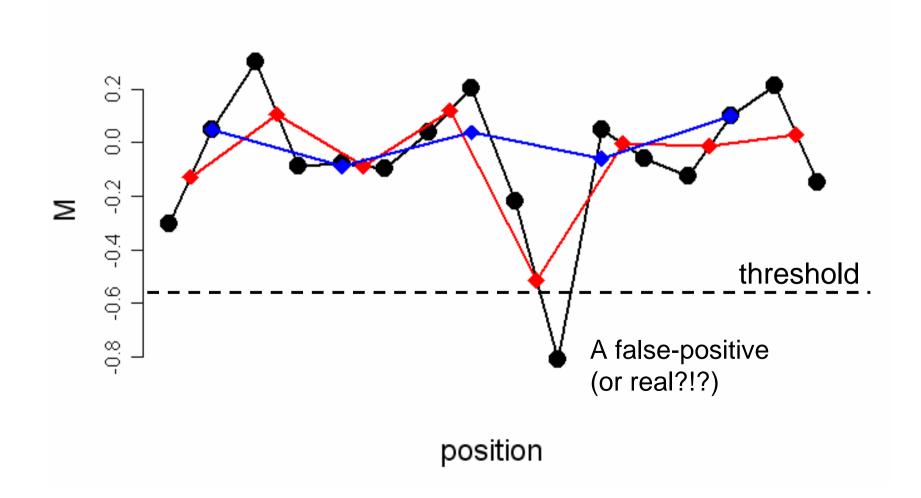
Better detection of CN=1 among CN=2 using CRMA v2



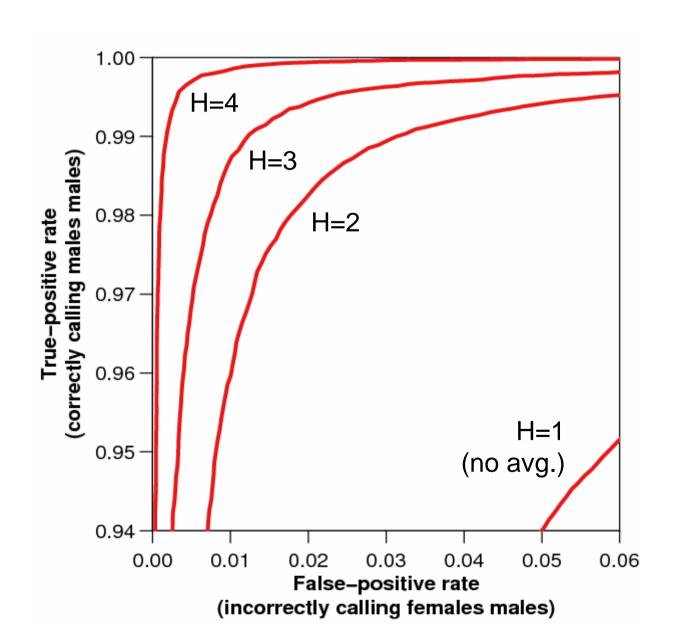
Comparing at different resolutions

Average across SNPs non-overlapping windows

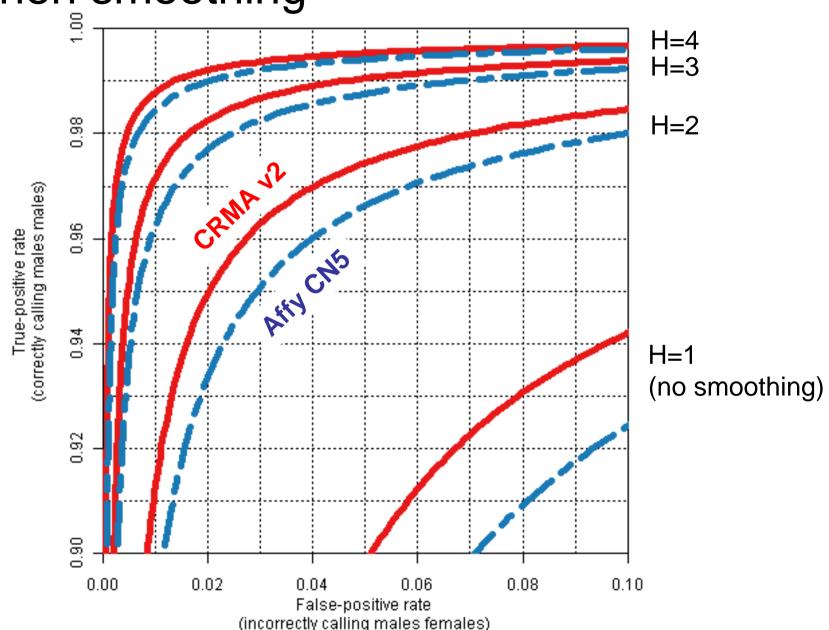
Averaging three and three (H=3)



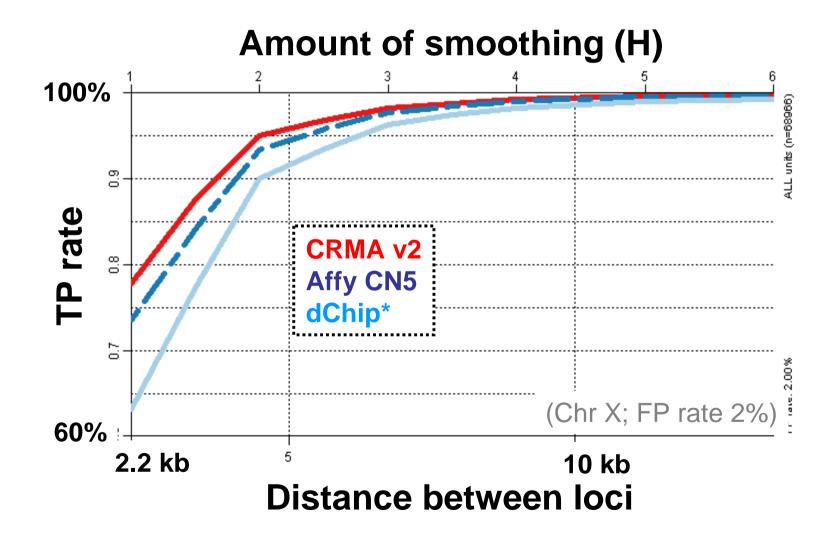
Better detection rate when averaging (with risk of missing short regions)



CRMA v2 does better also when smoothing



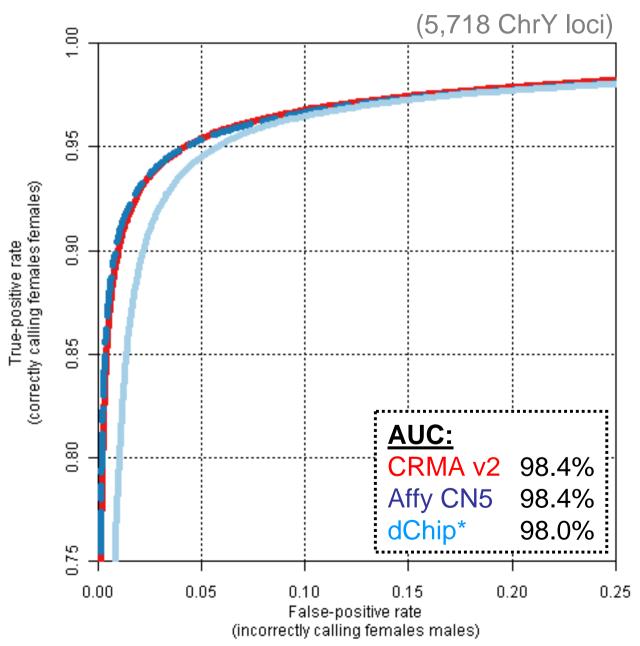
CRMA v2 detects CN=1 among CN=2 better than other at all resolutions



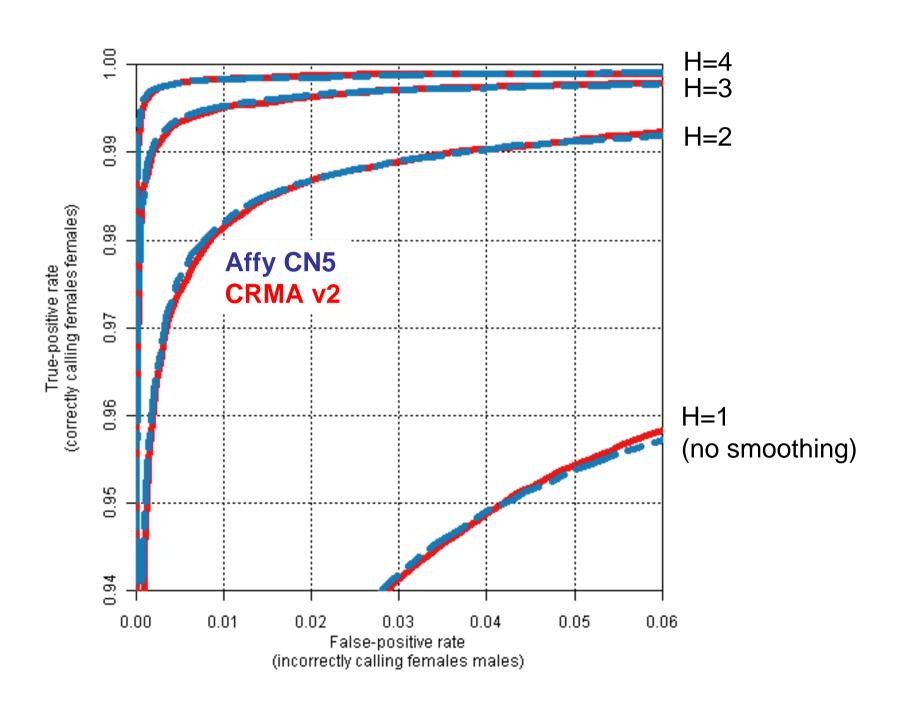
Performance on ChrY

It is easier to detect CN=0 among CN=1 (ChrY), than CN=1 among CN=2 (ChrX).

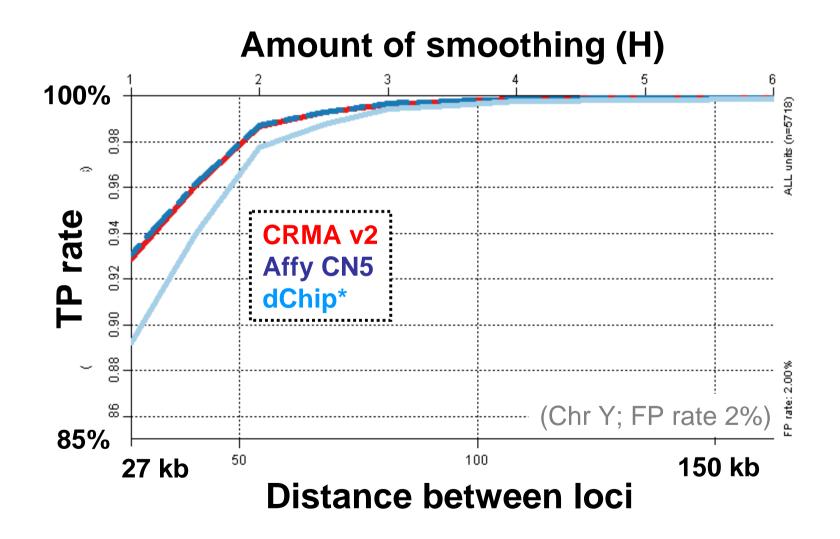
Better detection of CN=0 among CN=1 using CRMA v2/CN5



Similar also when smoothing

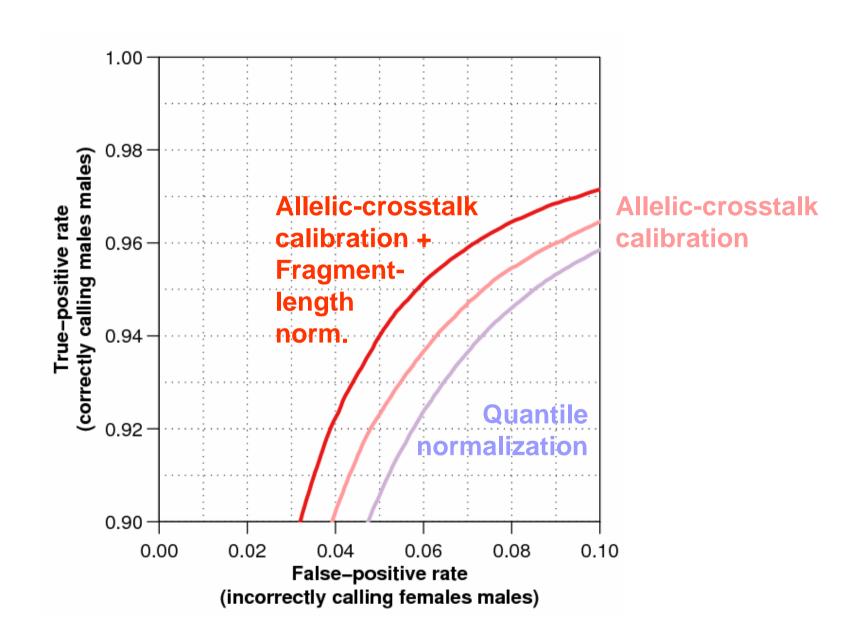


CRMA v2 & CN5 detects CN=0 among CN=1 equally well at different resolutions

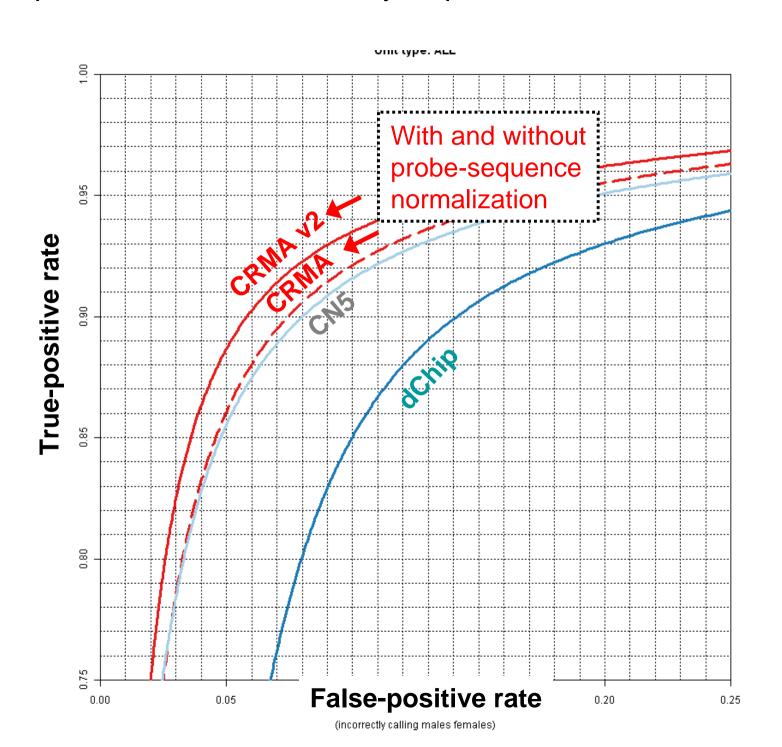


A final revisit of the pre-processing steps

Allelic-crosstalk calibration and PCR fragment length normalization improves the detection rate



Nucleotide-position normalization really helps



Conclusions

Pre-processing helps

- Allelic crosstalk calibration corrects for offset and provides better separation between genotype groups.
- Nucleotide-position normalization corrects for variation across arrays but also heterozygote imbalances.
- PCR fragment-length normalization remove additional variation.
- Using a in-house reference is better than an external one.

Reason for using CRMA v2

- CRMA v2 can differentiate CN=1 from CN=2 better than other methods.
- CRMA v2 & Affymetrix CN5 differentiate CN=0 from CN=1 equally well.
- CRMA v2 applies to all Affymetrix chip types.
- CRMA v2 is a single-array estimator.
- CRMA v2 can be applied immediately after scanning the array.
- There might be a CRMA v3 later;)

Appendix