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Copy-number probes are used to quantify
the amount of DNA at known loci

CN locus: ...CGTAGCCATCGGTAAGTACTCAATGATAG...
PM: ATCGGTAGCCATTCATGAGTTACTA

* **

PM = c

CN=1
* **

PM = 2c

CN=2
* **

PM = 3c

CN=3



SNP probes can also be used to
estimate total copy numbers

AA
* **

PM = PMA + PMB = 2c

* **

* **

PM = PMA + PMB = 2c

AB
* **

*

* **

PM = PMA + PMB = 2c

* **

BB

* **

PM = PMA + PMB = 3c

AAB
* **



(θijA,θijB) => (θij, βij)
θij = θijA+θijB, βij = θijB / θij

Transform

CijA = 2*(θijA /θRj)  and CijB = 2*(θijA /θRj)
Cij = 2*(θij /θRj)                       reference R

Allele-specific & 
total CNs

PCR fragment-length normalizationPost-processing

Robust averaging:

CN probes: θij = PMij

SNPs:         θijA = mediank(PMijkA)
θijB = mediank(PMijkB)

array i, loci j, probe k.

Summarization

1. Allelic crosstalk calibration
2. Probe-sequence normalization

Preprocessing
(probe signals)

CRMA v2



Allelic crosstalk
calibration



Crosstalk between alleles 
- adds significant artifacts to signals

Cross-hybridization:

Allele A:   TCGGTAAGTACTC
Allele B:   TCGGTATGTACTC

AA
* **

PMA >> PMB

* **

* **

PMA ≈ PMB

AB
* ** *

* **

PMA << PMB

* **

BB



There are six possible allele pairs

• Nucleotides: {A, C, G, T}
• Ordered pairs:

– (A,C), (A,G), (A,T), (C,G), (C,T), (G,C)

• Because of different nucleotides bind differently, the 
crosstalk from A to C might be very different from A to T.



AA

BB
AB

Crosstalk between alleles 
is easy to spot

offset

+

PMB

PMA

Example:
Data from one array.
Probe pairs (PMA, PMB)
for nucleotide pair (A,T).



Crosstalk between alleles 
can be estimated and corrected for

PMB

PMA

What is done:

1. Offset is removed
from SNPs and CN units.

2. Crosstalk is removed
from SNPs.

+

no offset

AA

BB
AB



aroma.affymetrix

You will need:
• Affymetrix CDF, e.g. GenomeWideSNP_6.cdf
• Probe sequences*, e.g. 

GenomeWideSNP_6.acs

Calibrate CEL files:

cdf <-
AffymetrixCdfSet$byChipType("Genom
eWideSNP_6")

csR <-



Crosstalk calibration corrects for 
differences in distributions too

log2 PM

Before removing crosstalk 
the arrays differ significantly...

log2 PM

...when removing offset & crosstalk
differences goes away.



How can a translation and a rescaling 
make such a big difference?

4 measurements 
of the same thing:

log2 PM

log2 PM

With different scales:
log(b*PM) = log(b)+log(PM)

log2 PM

With different scales
and some offset:
log(a+b*PM) = <non-linear>



Take home message

Allelic crosstalk calibration controls for:

1) offset in signals
2) crosstalk between allele A and allele B.



Probe sequence 
normalization



Nucleotide-Position Model

Probe-position (log2) affinity for probe k:

φk = φ((bk,1,bk,2,...,bk,25)) = ∑t=1..25 ∑b={ACGT} I(bk,t=b)λb,t

Position (t)
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Example: Probe-position affinity for 
CTCAGTGCCCAACAGATAAAGTCGT

"Sum up effect"



Probe-sequence normalization helps

1. The effects differ slightly across arrays:
– adds extra across-array variances
– will be removed

2. The effects differ between PMA and PMB:
– introduces genotypic imbalances such that 

PMA+PMB will differ for AA, AB & BB.
– will be removed



1. BPN controls for
across array

variability



The nucleotide-position effect
differ between arrays

Array #1:
φ = 0.16

Array #2:
φ =0.20

Array #60:
φ = 0.13

Average array:
φ = 0.18



The impact of these effects 
varies with probe sequence

Array #1:
φ = -0.17

Array #2:
φ =-0.10

Array #60:
φ = -0.18

Average array:
φ = -0.13



There is a noticeable difference in raw
CNs before and after normalization

without With BPN



There is a noticeable difference in raw
CNs before and after normalization

Without



There is a noticeable difference in raw
CNs before and after normalization

With BPN



2. BPN controls for
allele A and allele B 

imbalances



Nucleotide-position normalization controls for 
imbalances between allele A & allele B

PMA:
φφφφ = 0.53

PMB:
φφφφ = 0.22

Genotypic imbalances:

PM=PMA+PMB:
AA: 0.53+0.53 = 1.06
AB: 0.53+0.22 = 0.75
BB: 0.22+0.22 = 0.44

Thus, AA signals are
2^(1.06-0.44) = 2^0.62
= 1.54 times stronger
than BB signals.



(i) Before calibration there is crosstalk
- pairs AC, AG, AT, CG, CT & GT



(ii) After calibration the homozygote arms
are more orthogonal (note heterozygote arm!)



(iii) After sequence normalization the heterozygote 
arms are more balanced



aroma.affymetrix

You will need:

• Affymetrix CDF, e.g. GenomeWideSNP_6.cdf
• Probe sequences*, e.g. GenomeWideSNP_6.acs

Normalize CEL files:

bpn <- BasePositionNormalization(csC, target="zero")

csN <- process(bpn)

Works with any chip type, e.g. resequencing, 
exon, expression, SNP.

To plot:
fit <- getFit(bpn, array=1)

plot(fit)



Probe
summarization



• CN units: All single-probe units:
– Chip-effect estimate: θij = PMij

• SNPs: Identically replicated probe pairs:
– Probe pairs: (PMijkA,PMijkB); k=1,2,3
– Allele-specific estimates:

• θijA = mediank{PMijkA}
• θijB = mediank{PMijkB}

Probe summarization
(on the new arrays)



aroma.affymetrix

You will need:

• Affymetrix CDF, e.g. GenomeWideSNP_6.cdf

Summarizing probe signals:

plm <- AvgCnPlm(csN, combineAlleles=FALSE)

fit(plm)

ces <- getChipEffectSet(plm)

theta <- extractTheta(ces)



Probe-level summarization (10K-500K)
- (if) replicated probes respond differently

For a particular SNP we now have K added 
signals:

(PM1, PM2, ..., PM
K
)

which are measures of the same thing - the 
CN.  However, they have slightly different 
sequences, so their hybridization efficiency 
might differ.



Probe-level summarization
- different probes respond differently

12 arrays with different expression levels
1   2  3    4   5     6     7            8        9      10  11 12

18 probes
for the same
probe set

Example:
log2(PM1)=
log2(PM2)+a1
=>
PM1 = φ1*PM2
(φ1 = 2a1)

log(PM)



Probe-level summarization
- probe affinity model

For a particular SNP, the total CN signal
for sample i=1,2,...,I is: θi

Which we observe via K probe signals:   (PMi1, PMi2, ..., PM
iK

)

rescaled by probe affinities: (φ1, φ2, ..., φK
)

A multiplicative model for the observed PM signals is then:

PMik = φk * θθθθi + ξik

where ξ
ik

is noise.



Probe-level summarization
- the log-additive model

For one SNP, the model is:
PMik = φk * θi + ξik

Take the logarithm on both sides:

log2(PMik) = log2(φk * θi + ξik)
¼ log2(φk * θi)+ εik

= log2φk + log2θi + εik

Sample i=1,2,...,I, and probe k=1,2,...,K.



Probe-level summarization
- the log-additive model

With multiple arrays i=1,2,...,I, we can estimate the 
probe-affinity parameters {φk} and therefore also 
the "chip effects" {θi} in the model:

log2(PMik) = log2φk + log2θi + εik

Conclusion: We have summarized 
signals (PMAk,PMBk) for probes k=1,2,...,K 

into one signal θθθθi per sample.



Very brief on existing 
genotyping algorithms



Allele-specific estimates (θijA,θijB)



Idea of RLMM, BRLMM, CRLMM

Find genotype regions for each SNP:
• Pick a high-quality training data set for which we know 

the true genotypes, e.g. the 270 HapMap samples.

• Estimate (θijA,θijB) for all samples and SNPs.
• For each SNP, find the regions for all samples with AA, 

then with AB, and the with BB.
- The regions will differ slightly between SNPs.

• (Bayesian modelling of prior SNP regions)
For a new sample:
• For each SNP, identify the trained genotype region 

that is closest to its (θijA,θijB).  That will be the genotype.



Calling genotyping in (θijA,θijB)



For some SNPs it is harder to distinguish
the genotype groups



Careful: Genotyping algorithms often 
assume diploid states, not CN aberrations



Crosstalk calibration (incl. the removal of the 
offset) gives better separation of AA, AB, BB.

Without calibration: With calibration:



A more suttle example

Without calibration: With calibration:



Fragment length
normalization



Longer fragments are amplified less by PCR
Observed as weaker θ signals

Note, here we study the effect on non-polymorphic 
signals, that is, for SNPs we first do θij = θijA + θijB.



Slightly different effects between arrays
adds extra variation



Fragment-length normalization
for multi-enzyme hybridizations

• For GWS5 and GWS6, the DNA is fragmented 
using two enzymes.

• For all CN probes, all targets originate from NspI
digestion.

• For SNP probes, some targets originate 
exclusively from NspI, exclusively from StyI, or 
from both NspI and StyI.



Fragment-length effects for co-hybridized
enzymes are assumed to be additive



Fragment-length normalization
for co-hybridized enzymes

Multi-enzyme normalization model:

log2θj* ← log2θj - δ*
δ* = δ(λNsp,j, λSty,j) = correction

λNsp,λSty = fragment lengths in NspI and StyI.



Multi-enzyme fragment-length normalization
removes the effects

Array #1 before Array #1 after



Array #1 after

Multi-enzyme fragment-length normalization
removes the effects

Array #1 before



Removing the effect on the chip effects,
will also remove the effect on CN log ratios

Before: After:



Before

After

σ = 0.246

σ = 0.225



aroma.affymetrix

You will need:

• Affymetrix CDF, e.g. GenomeWideSNP_6.cdf
• A Unit Fragment Length file, e.g. GenomeWideSNP_6.ufl

fln <- FragmentLengthNormalization(ces, target="zero" )

cesN <- process(fln)



Finally, 
a convenient 

transform



Transform (θijA,θijB) to (θij, βij) by:

Non-polymorphic SNP signal: θθθθij = θθθθijA + + + + θθθθijB
Allele B frequency signal: βij = = = = θθθθijB / θθθθij

A CN probe does not have a βij. However, both 
CN probes and SNPs have a non-polymorphic signal θij.

We expect the following:
Genotype BB:  θijB >> θijA => βij ≈ 1
Genotype AA:  θijB << θijA => βij ≈ 0
Genotype AB:  θijB ≈ θijA => βij ≈ ½

Thus, θij carry information on CN and βij on genotype.

Bijective transform of (θijA,θijB) in to (θij, βij).



Relative copy numbers:

Cij = 2*(θij / θRj)

Alternatively, log-ratios:

Mij = log2(θij / θRj)

Note: Cij is defined also when θ <= 0, but Mij is not.

Array i=1,2,...,I.  Locus j=1,2,...,J.

Copy numbers are estimated
relative to a reference



Allele-specific copy numbers (CijA,CijB):

CijA = 2*(θθθθijA / θθθθRj)
CijB = 2*(θθθθijB / θθθθRj)

Note that,

1. Cij = CijA+CijB = 2*(θijA+ θRj) / θRj = 2*(θij / θRj)

2. CijB/Cij = [2*(θijB / θRj)] / [2*(θij / θRj)]  = θijB / θij = βij

3. CijB = 2*(θijB / θij) * (θij/ θRj) = βij * Cij

Allele-specific copy numbers



aroma.affymetrix

You will need:

• Affymetrix CDF, e.g. GenomeWideSNP_6.cdf
• A Unit Genome Position file, e.g. GenomeWideSNP_6.ugp

data <- extractTotalAndFreqB(cesN)

theta <- data[,"total",]

freqB <- data[,“freqB",]

Plot Array 3 along chromosome 2

gi <- getGenomeInformation(cdf)

units <- getUnitsOnChromosome(gi, 2)

pos <- getPositions(gi, units)

plot(pos, theta[units,3])

plot(pos, freqB[units,3])



CN and freqB - (C,β) - along genome



Selecting
reference samples



The choice of reference sample(s) is important
- A real example from my postdoc projects

Data set: 
• 3 Affymetrix 250K Nsp arrays.
• Processed at the AGRF / WEHI, Melbourne, Australia.

Reference sets:
• Public: 270 normal HapMap arrays (“gold standard”).
• In-house: 11 anonymous/unknown(!) AGRF arrays.



Segmentation regions found with reference 
set:
(i) 11 in-house samples and (i) 270 HapMap 
samples sample chr length #SNPs log2CN AGRF HapMap

A 9 1,023 3 0.50 gain X
A 20 5,161 3 -0.47 loss X
A 13 10,770 3 0.50 gain X
A 10 26,774 3 -0.25 loss X
A 5 34,423 3 -0.44 loss X
B 4 47,982 3 0.65 gain X
B 14 22,269 5 0.45 gain X X
A 6 37,028 6 -0.34 loss X
C 6 37,028 6 -0.32 loss X
C 3 38,218 7 -0.39 loss X
A 3 39,082 8 -0.43 loss X
A 11 21,357 11 -0.30 loss X
A 10 90,838 12 0.29 gain X
A 14 153,137 25 0.41 gain X X
B 14 153,137 25 0.76 gain X X
C 14 153,137 25 0.55 gain X X
B 22 225,133 31 0.37 gain X
B 13 297,921 36 -0.30 loss X
B 8 171,547 37 -0.34 loss X
A 14 411,453 70 -0.21 loss X
A 23 2,696,994 169 0.34 loss X
C 23 2,696,994 169 0.40 gain X poorly
B 11 32,485,465 3823 -0.39 loss X X
A 21 37,006,554 3936 0.17 trisomy X
Count 25 6
Fraction 100% 24%

▼



σ = 0.237

σ = 0.126

270 samples

11 anonymous 
samples

HapMap

AGRF

Stronger signal with in-house reference set 
Example: A 37 SNP deletion on chr 8



Conclusion

It is better to use a small, 
even unknown, reference set 
from the same microarray lab 
than an external reference set.



Summary of
CRMA v2



(θijA,θijB) => (θij, βij)
θij = θijA+θijB, βij = θijB / θij

Transform

CijA = 2*(θijA /θRj)  and CijB = 2*(θijA /θRj)
Cij = 2*(θij /θRj)                       reference R

Allele-specific & 
total CNs

PCR fragment-length normalizationPost-processing

Robust averaging:

CN probes: θij = PMij

SNPs:         θijA = mediank(PMijkA)
θijB = mediank(PMijkB)

array i, loci j, probe k.

Summarization

1. Allelic crosstalk calibration
2. Probe-sequence normalization

Preprocessing
(probe signals)

CRMA v2



Single array
method



CRMA v2 is a single-array 
preprocessing method

• CRMA v2 estimates chip effects of one array 
independently of other arrays.
– It does not use prior parameter estimates etc.
– A reference signals is only needed when calculating relative 

CNs, i.e. Ci = 2*(θi/θR).

• Implications:
– Tumor/normal studies can be done with only two hybrizations.
– No need to rerun analysis when new arrays are added.
– Large data sets can be processed on multiple machines.



Evaluation



Other methods

Mij = log2(θij/θRj)Mij = log2(θij/θRj)Mij = log2(θij/θRj)
[ Cij = 2*(θij/θRj) ]

Raw total CNs

fragment-length.
GC-content.

Enzyme seq
normalization.

Genome “wave” 
normalization

-fragment-length.
(GC-content)

Post-processing

i) log-additive

ii) θ=θA+θB

i) PM=PMA+PMB
ii) multiplicative

i) Robust avg.

ii) θ=θA+θB

Summarization 
(SNP signals θ)
and total CNs

quantileinvariant-setallelic crosstalk. 
probe-seq norm.

Preprocessing
(probe signals)

CN5
(Affymetrix 2006)

dChip
(Li & Wong 2001)

CRMA v2

single-array multi-array multi-array



How well can detect CN changes
compare with other methods?

• Other methods:
– Affymetrix ("CN5") estimates (software GTC v3).
– dChip estimates (software dChip 2008).

• Data set:
– 59 GWS6 HapMap samples (29 females & 30 males).

• Evaluation:
– How well can we detect:

• CN=1 among CN=2 (ChrX), and 
• CN=0 among CN=1 (ChrY)?

– At full resolution and various amounts of smoothing.



Calling samples for SNP_A-1920774

# males: 30
# females: 29

Call rule:
If Mi < threshold, a male

Calling a male male:
#True-positives: 30 
TP rate: 30/30 = 100%

Calling a female male:
#False-positive : 5
FP rate: 5/29 = 17%



Receiver Operator Characteristic (ROC)

FP rate
(incorrectly calling females male)

TP rate

(correctly calling
a males male)

increasing
threshold

²

(17%,100%)



Single-SNP comparison
A random SNP

TP rate

(correctly calling
a males male)

FP rate
(incorrectly calling females male)



Single-SNP comparison
A non-differentiating SNP

TP rate

(correctly calling
a males male)

FP rate
(incorrectly calling females male)



Performance of an average SNP
with a common threshold

59 individuals



AUC:
CRMA v2 96.8%
Affy CN5 96.2%
dChip* 95.6%

Better detection of CN=1 among CN=2
using CRMA v2

(68,966 Chr X loci)



Comparing at
different resolutions



No averaging (R=1)Averaging two and two (R=2)Averaging three and three (H=3)

Average across SNPs
non-overlapping windows

threshold

A false-positive
(or real?!?)



Better detection rate when averaging
(with risk of missing short regions)

H=1
(no avg.)

H=2

H=3

H=4



CRMA v2

Affy
CN5

H=1
(no smoothing)

H=2

H=3
H=4

CRMA v2 does better
also when smoothing



CRMA v2 detects CN=1 among CN=2 
better than other at all resolutions

(Chr X; FP rate 2%)

2.2 kb

100%

60%

T
P

 r
at

e
Amount of smoothing (H)

Distance between loci
10 kb

CRMA v2
Affy CN5
dChip*



Performance
on ChrY

It is easier to detect 
CN=0 among CN=1 (ChrY), than

CN=1 among CN=2 (ChrX).



AUC:
CRMA v2 98.4%
Affy CN5 98.4%
dChip* 98.0%

Better detection of CN=0 among CN=1
using CRMA v2/CN5

(5,718 ChrY loci)



Affy CN5
CRMA v2

H=1
(no smoothing)

H=2

H=3
H=4

Similar also when smoothing



CRMA v2 & CN5 detects CN=0 among 
CN=1 equally well at different resolutions

(Chr Y; FP rate 2%)

150 kb

100%

85%
27 kb

T
P

 r
at

e
Amount of smoothing (H)

Distance between loci

CRMA v2
Affy CN5
dChip*



A final revisit of the 
pre-processing steps



Allelic-crosstalk calibration and PCR fragment 
length normalization improves the detection rate

Allelic-crosstalk
calibration +
Fragment-
length
norm.

Allelic-crosstalk
calibration

Quantile
normalization



CRMA v2

CRMA

CN5

dChip

With and without
probe-sequence
normalization

False-positive rate
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Nucleotide-position normalization really helps



Conclusions



Pre-processing helps

• Allelic crosstalk calibration corrects for offset and 
provides better separation between genotype 
groups.

• Nucleotide-position normalization corrects for 
variation across arrays but also heterozygote 
imbalances.

• PCR fragment-length normalization remove 
additional variation.

• Using a in-house reference is better than an 
external one.



Reason for using CRMA v2

• CRMA v2 can differentiate CN=1 from CN=2 
better than other methods.

• CRMA v2 & Affymetrix CN5 differentiate CN=0 
from CN=1 equally well.

• CRMA v2 applies to all Affymetrix chip types.
• CRMA v2 is a single-array estimator.
• CRMA v2 can be applied immediately after 

scanning the array.
• There might be a CRMA v3 later ;)



Appendix


